

Programmer’s Reference Guide of Zend Framework 2

Introduction to Zend Framework 2

	Overview

	Installation

User Guide

The user guide is provided to take you through a non-trivial example, showing
you various techniques and features of the framework in order to build an
application.

	Getting Started with Zend Framework 2

	Getting started: A skeleton application

	Modules

	Routing and controllers

	Database and models

	Styling and Translations

	Forms and actions

	Conclusion

Zend Framework Tool (ZFTool)

	Zend Framework Tool (ZFTool)

Learning Zend Framework 2

	Learning Dependency Injection

	Unit Testing a Zend Framework 2 application

	Advanced Configuration Tricks

	Using the EventManager

	Using Zend\Navigation in your Album Module

	Using Zend\Paginator in your Album Module

	Setting up a database adapter

Migration

	Migration from Zend Framework 1

	Namespacing Old Classes

	Running Zend Framework 2 and Zend Framework 1 in parallel

Zend Framework 2 Reference

Zend\Authentication

	Introduction to Zend\Authentication

	Database Table Authentication

	Digest Authentication

	HTTP Authentication Adapter

	LDAP Authentication

	Authentication Validator

Zend\Barcode

	Introduction to Zend\Barcode

	Barcode creation using Zend\Barcode\Barcode class

	Zend\Barcode\Barcode Objects

	Zend\Barcode Renderers

Zend\Cache

	Zend\Cache\Storage\Adapter

	Zend\Cache\Storage\Capabilities

	Zend\Cache\Storage\Plugin

	Zend\Cache\Pattern

	Zend\Cache\Pattern\CallbackCache

	Zend\Cache\Pattern\ClassCache

	Zend\Cache\Pattern\ObjectCache

	Zend\Cache\Pattern\OutputCache

	Zend\Cache\Pattern\CaptureCache

Zend\Captcha

	Introduction to Zend\Captcha

	Captcha Operation

	CAPTCHA Adapters

Zend\Config

	Introduction to Zend\Config

	Theory of Operation

	Zend\Config\Reader

	Zend\Config\Writer

	Zend\Config\Processor

	The Factory

Zend\Console

	Introduction to Zend\Console

	Console routes and routing

	Console-aware modules

	Console-aware action controllers

	Console adapters

	Console prompts

Zend\Crypt

	Introduction to Zend\Crypt

	Encrypt/decrypt using block ciphers

	Key derivation function

	Password

	Public key cryptography

Zend\Db

	Zend\Db\Adapter

	Zend\Db\ResultSet

	Zend\Db\Sql

	Zend\Db\Sql\Ddl

	Zend\Db\TableGateway

	Zend\Db\RowGateway

	Zend\Db\Metadata

Zend\Di

	Introduction to Zend\Di

	Zend\Di Quickstart

	Zend\Di Definition

	Zend\Di InstanceManager

	Zend\Di Configuration

	Zend\Di Debugging & Complex Use Cases

Zend\Dom

	Introduction to Zend\Dom

	Zend\Dom\Query

Zend\Escaper

	Introduction to Zend\Escaper

	Theory of Operation

	Configuring Zend\Escaper

	Escaping HTML

	Escaping HTML Attributes

	Escaping Javascript

	Escaping Cascading Style Sheets

	Escaping URLs

Zend\EventManager

	The EventManager

Zend\Feed

	Introduction to Zend\Feed

	Importing Feeds

	Retrieving Feeds from Web Pages

	Consuming an RSS Feed

	Consuming an Atom Feed

	Consuming a Single Atom Entry

	Zend\Feed and Security

	Zend\Feed\Reader\Reader

	Zend\Feed\Writer\Writer

	Zend\Feed\PubSubHubbub

Zend\File

	Zend\File\ClassFileLocator

Zend\Filter

	Introduction to Zend\Filter

	Standard Filter Classes

	Word Filters

	File Filter Classes

	Filter Chains

	Zend\Filter\Inflector

	Writing Filters

Zend\Form

	Introduction to Zend\Form

	Form Quick Start

	Form Collections

	File Uploading

	Advanced use of forms

	Form Elements

	Form View Helpers

Zend\Http

	Overview of Zend\Http

	The Request Class

	The Response Class

	The Headers Class

	HTTP Client - Overview

	HTTP Client - Connection Adapters

	HTTP Client - Advanced Usage

	HTTP Client - Static Usage

Zend\I18n

	Translating

	I18n View Helpers

	I18n Filters

	I18n Validators

Zend\InputFilter

	Introduction to Zend\InputFilter

	File Upload Input

Zend\Json

	Introduction to Zend\Json

	Basic Usage

	Advanced Usage of Zend\Json

	XML to JSON conversion

	Zend\Json\Server - JSON-RPC server

Zend\Ldap

	Introduction to Zend\Ldap

	API overview

	Usage Scenarios

	Tools

	Object-oriented access to the LDAP tree using Zend\Ldap\Node

	Getting information from the LDAP server

	Serializing LDAP data to and from LDIF

Zend\Loader

	The AutoloaderFactory

	The StandardAutoloader

	The ClassMapAutoloader

	The ModuleAutoloader

	The SplAutoloader Interface

	The PluginClassLoader

	The ShortNameLocator Interface

	The PluginClassLocator interface

	The Class Map Generator utility: bin/classmap_generator.php

Zend\Log

	Overview of Zend\Log

	Writers

	Filters

	Formatters

Zend\Mail

	Introduction to Zend\Mail

	Zend\Mail\Message

	Zend\Mail\Transport

	Zend\Mail\Transport\SmtpOptions

	Zend\Mail\Transport\FileOptions

Zend\Math

	Introduction to Zend\Math

Zend\Mime

	Zend\Mime

	Zend\Mime\Message

	Zend\Mime\Part

Zend\ModuleManager

	Introduction to the Module System

	The Module Manager

	The Module Class

	The Module Autoloader

	Best Practices when Creating Modules

Zend\Mvc

	Introduction to the MVC Layer

	Quick Start

	Default Services

	Routing

	The MvcEvent

	The SendResponseEvent

	Available Controllers

	Controller Plugins

	Examples

Zend\Navigation

	Introduction to Zend\Navigation

	Quick Start

	Pages

	Containers

	View Helpers

	View Helper - Breadcrumbs

	View Helper - Links

	View Helper - Menu

	View Helper - Sitemap

	View Helper - Navigation Proxy

Zend\Paginator

	Introduction to Zend\Paginator

	Usage

	Configuration

	Advanced usage

Zend\Permissions\Acl

	Introduction to Zend\Permissions\Acl

	Refining Access Controls

	Advanced Usage

Zend\Permissions\Rbac

	Introduction to Zend\Permissions\Rbac

	Methods

	Examples

Zend\ProgressBar

	Progress Bars

	File Upload Handlers

Zend\Serializer

	Introduction to Zend\Serializer

	Zend\Serializer\Adapter

Zend\Server

	Introduction to Zend\Server

	Zend\Server\Reflection

Zend\ServiceManager

	Zend\ServiceManager

	Zend\ServiceManager Quick Start

	Delegator service factories

	Lazy Services

Zend\Session

	Session Config

	Session Container

	Session Manager

	Session Save Handlers

	Session Storage

	Session Validators

Zend\Soap

	Zend\Soap\Server

	Zend\Soap\Client

	WSDL Accessor

	AutoDiscovery

Zend\Stdlib

	Zend\Stdlib\Hydrator

	Zend\Stdlib\Hydrator\Filter

	Zend\Stdlib\Hydrator\Strategy

	Zend\Stdlib\Hydrator\Aggregate\AggregateHydrator

Zend\Tag

	Introduction to Zend\Tag

	Creating tag clouds with Zend\Tag\Cloud

Zend\Test

	Introduction to Zend\Test

	Unit testing with PHPUnit

Zend\Text

	Zend\Text\Figlet

	Zend\Text\Table

Zend\Uri

	Zend\Uri

Zend\Validator

	Introduction to Zend\Validator

	Standard Validation Classes

	File Validation Classes

	Validator Chains

	Writing Validators

	Validation Messages

Zend\Version

	Getting the Zend Framework Version

Zend\View

	Zend\View Quick Start

	The PhpRenderer

	PhpRenderer View Scripts

	The ViewEvent

	View Helpers

	View Helper - BasePath

	View Helper - Cycle

	View Helper - Doctype

	FlashMessenger Helper

	View Helper - HeadLink

	View Helper - HeadMeta

	View Helper - HeadScript

	View Helper - HeadStyle

	View Helper - HeadTitle

	View Helper - HtmlList

	View Helper - HTML Object

	View Helper - Identity

	View Helper - InlineScript

	View Helper - JSON

	View Helper - Partial

	View Helper - Placeholder

	View Helper - URL

	Advanced usage of helpers

Zend\XmlRpc

	Introduction to Zend\XmlRpc

	Zend\XmlRpc\Client

	Zend\XmlRpc\Server

Services for Zend Framework 2 Reference

ZendService\Akismet

	ZendService\Akismet

ZendService\Amazon

	ZendService\Amazon

ZendService\AppleApns

	ZendService\Apple\Apns

ZendService\Audioscrobbler

	ZendService\Audioscrobbler

ZendService\Del.icio.us

	ZendService\Delicious

ZendService\Developer Garden

	ZendServiceDeveloperGardenDeveloperGarden

ZendService\Flickr

	ZendService\Flickr

ZendService\Google\Gcm

	ZendService\Google\Gcm

ZendService\LiveDocx

	ZendService\LiveDocx\LiveDocx

ZendService\Nirvanix

	ZendService\Nirvanix

ZendService\Rackspace

	Zend\Service\Rackspace

ZendService\ReCaptcha

	ZendService\ReCaptcha

ZendService\SlideShare

	ZendService\SlideShare

ZendService\StrikeIron

	ZendService\StrikeIron

	ZendService\StrikeIron: Bundled Services

	ZendService\StrikeIron: Advanced Uses

ZendService\Technorati

	ZendService\Technorati

ZendService\Twitter

	ZendService\Twitter

ZendService\Windows Azure

	ZendService\WindowsAzure

Copyright

	Copyright Information

Indices and tables

	Programmer’s Reference Guide of Zend Framework 2

	Search Page

 [image: Edit this document]

 Overview

Overview

Zend Framework 2 is an open source framework for developing web applications and services using PHP 5.3+. Zend
Framework 2 uses 100% object-oriented [http://en.wikipedia.org/wiki/Object-oriented_programming] code and utilises most of the new features of PHP 5.3, namely
namespaces [http://php.net/manual/en/language.namespaces.php], late static binding [http://php.net/lsb], lambda functions and closures [http://php.net/manual/en/functions.anonymous.php].

Zend Framework 2 evolved from Zend Framework 1, a successful PHP framework with over 15 million
downloads.

Note

ZF2 is not backward compatible with ZF1, because of the new features in PHP 5.3+ implemented by
the framework, and due to major rewrites of many components.

The component structure of Zend Framework 2 is unique; each component is designed with few
dependencies on other components. ZF2 follows the SOLID [http://en.wikipedia.org/wiki/SOLID_%28object-oriented_design%29] object-oriented design principle. This loosely coupled
architecture allows developers to use whichever components they want. We call this a “use-at-will” design.
We support Pyrus [http://pear.php.net/manual/en/pyrus.php] and Composer [http://getcomposer.org/] as installation and dependency tracking mechanisms for the framework as a whole and
for each component, further enhancing this design.

We use PHPUnit [http://www.phpunit.de] to test our code and Travis CI [http://travis-ci.org/] as a Continuous Integration service.

While they can be used separately, Zend Framework 2 components in the standard library form a powerful and extensible
web application framework when combined. Also, it offers a robust, high performance MVC [http://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller#PHP] implementation, a
database abstraction that is simple to use, and a forms component that implements HTML5 form rendering [http://www.w3.org/TR/html5/forms.html#forms],
validation, and filtering so that developers can consolidate all of these operations using one easy-to-use, object
oriented interface. Other components, such as Zend\Authentication and
Zend\Permissions\Acl, provide user authentication and authorization against
all common credential stores.

Still others, with the ZendService namespace, implement client libraries to simply access the most
popular web services available. Whatever your application needs are, you’re likely to find a Zend Framework 2
component that can be used to dramatically reduce development time with a thoroughly tested foundation.

The principal sponsor of the project ‘Zend Framework 2’ is Zend Technologies [http://www.zend.com], but many companies have contributed
components or significant features to the framework. Companies such as Google, Microsoft, and StrikeIron have
partnered with Zend to provide interfaces to web services and other technologies they wish to make available
to Zend Framework 2 developers.

Zend Framework 2 could not deliver and support all of these features without the help of the vibrant Zend Framework 2
community. Community members, including contributors, make themselves available on mailing lists [http://framework.zend.com/archives],
IRC channels [http://www.zftalk.com] and other forums. Whatever question you have about Zend Framework 2, the community is always
available to address it.

 [image: Edit this document]

 Installation

Installation

	New to Zend Framework?
Download the latest stable release. [http://packages.zendframework.com/] Available in .zip and .tar.gz formats.

	Brave, cutting edge?
Download Zend Framework’s Git repository [https://github.com/zendframework/zf2] using a Git [http://git-scm.com/] client. Zend Framework is open source software,
and the Git repository used for its development is publicly available on GitHub [http://github.com/]. Consider using Git to get
Zend Framework if you want to contribute back to the framework, or need to upgrade your framework version more
often than releases occur.

Once you have a copy of Zend Framework available, your application needs to be able to access the framework classes
found in the library folder. There are several ways to achieve this [http://www.php.net/manual/en/configuration.changes.php].

Failing to find a Zend Framework 2 installation, the following error occurs:

Fatal error: Uncaught exception 'RuntimeException' with message
'Unable to load ZF2. Run `php composer.phar install` or define
a ZF2_PATH environment variable.'

To fix that, you can add the Zend Framework’s library path to the PHP include_path [http://www.php.net/manual/en/ini.core.php#ini.include-path].
Also, you should set an environment path named ‘ZF2_PATH’ in httpd.conf (or equivalent).
i.e. SetEnv ZF2_PATH /var/ZF2 running Linux.

Rob Allen [http://akrabat.com/about] has kindly provided the community with an introductory tutorial, Getting Started with Zend Framework 2 [http://zf2.readthedocs.org/en/latest/user-guide/overview.html].
Other Zend Framework community members are actively working on expanding the tutorial [http://zend-framework-community.634137.n4.nabble.com/zf2-tutorial-td4656144.html].

 [image: Edit this document]

 Getting Started with Zend Framework 2

Getting Started with Zend Framework 2

This tutorial is intended to give an introduction to using Zend Framework 2 by
creating a simple database driven application using the Model-View-Controller
paradigm. By the end you will have a working ZF2 application and you can then
poke around the code to find out more about how it all works and fits together.

Some assumptions

This tutorial assumes that you are running at least PHP 5.3.3 with the Apache web server
and MySQL, accessible via the PDO extension. Your Apache installation must have
the mod_rewrite extension installed and configured.

You must also ensure that Apache is configured to support .htaccess files. This is
usually done by changing the setting:

	1

	 AllowOverride None

to

	1

	 AllowOverride FileInfo

in your httpd.conf file. Check with your distribution’s documentation for
exact details. You will not be able to navigate to any page other than the home
page in this tutorial if you have not configured mod_rewrite and .htaccess usage
correctly.

The tutorial application

The application that we are going to build is a simple inventory system to
display which albums we own. The main page will list our collection and allow us
to add, edit and delete CDs. We are going to need four pages in our website:

	Page
	Description

	List of albums
	This will display the list of albums and provide links to
edit and delete them. Also, a link to enable adding new
albums will be provided.

	Add new album
	This page will provide a form for adding a new album.

	Edit album
	This page will provide a form for editing an album.

	Delete album
	This page will confirm that we want to delete an album and
then delete it.

We will also need to store our data into a database. We will only need one table
with these fields in it:

	Field name
	Type
	Null?
	Notes

	id
	integer
	No
	Primary key, auto-increment

	artist
	varchar(100)
	No
	

	title
	varchar(100)
	No
	

 [image: Edit this document]

 Getting started: A skeleton application

Getting started: A skeleton application

In order to build our application, we will start with the
ZendSkeletonApplication [https://github.com/zendframework/ZendSkeletonApplication]
available on github [https://github.com/]. Use Composer (http://getcomposer.org)
to create a new project from scratch with Zend Framework:

	1
2

	 php composer.phar create-project --repository-url="https://packages.zendframework.com" -s dev zendframework/skeleton-application path/to/install
 php composer.phar update

Note

Another way to install the ZendSkeletonApplication is to use github. Go to
https://github.com/zendframework/ZendSkeletonApplication and click the “Zip”
button. This will download a file with a name like
ZendSkeletonApplication-master.zip or
similar.

Unzip this file into the directory where you keep all your vhosts and rename the
resultant directory to zf2-tutorial.

ZendSkeletonApplication is set up to use Composer (http://getcomposer.org) to
resolve its dependencies. In this case, the dependency is Zend Framework 2
itself.

To install Zend Framework 2 into our application we simply type:

	1
2
3

	 php composer.phar self-update
 php composer.phar install
 php composer.phar update

from the zf2-tutorial folder. This takes a while. You should see an output like:

	1
2
3
4
5

	 Installing dependencies from lock file
 - Installing zendframework/zendframework (dev-master)
 Cloning 18c8e223f070deb07c17543ed938b54542aa0ed8

 Generating autoload files

Note

If you see this message:

	1
2

	 [RuntimeException]
 The process timed out.

then your connection was too slow to download the entire package in time, and composer
timed out. To avoid this, instead of running:

	1
2

	 php composer.phar install
 php composer.phar update

run instead:

	1
2

	 COMPOSER_PROCESS_TIMEOUT=5000 php composer.phar install
 COMPOSER_PROCESS_TIMEOUT=5000 php composer.phar update

We can now move on to the virtual host.

Using the Apache Web Server

You now need to create an Apache virtual host for the application and edit your
hosts file so that http://zf2-tutorial.localhost will serve index.php from the
zf2-tutorial/public directory.

Setting up the virtual host is usually done within httpd.conf or
extra/httpd-vhosts.conf. If you are using httpd-vhosts.conf, ensure
that this file is included by your main httpd.conf file. Some Linux distributions
(ex: Ubuntu) package Apache so that configuration files are stored in /etc/apache2
and create one file per virtual host inside folder /etc/apache2/sites-enabled. In
this case, you would place the virtual host block below into the file
/etc/apache2/sites-enabled/zf2-tutorial.

Ensure that NameVirtualHost is defined and set to “*:80” or similar, and then
define a virtual host along these lines:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 <VirtualHost *:80>
 ServerName zf2-tutorial.localhost
 DocumentRoot /path/to/zf2-tutorial/public
 SetEnv APPLICATION_ENV "development"
 <Directory /path/to/zf2-tutorial/public>
 DirectoryIndex index.php
 AllowOverride All
 Order allow,deny
 Allow from all
 </Directory>
 </VirtualHost>

Make sure that you update your /etc/hosts or
c:\windows\system32\drivers\etc\hosts file so that zf2-tutorial.localhost
is mapped to 127.0.0.1. The website can then be accessed using
http://zf2-tutorial.localhost.

	1

	 127.0.0.1 zf2-tutorial.localhost localhost

Restart your web server.
If you’ve done it right, you should see something like this:

[image: ../_images/user-guide.skeleton-application.hello-world.png]
To test that your .htaccess file is working, navigate to
http://zf2-tutorial.localhost/1234 and you should see this:

[image: ../_images/user-guide.skeleton-application.404.png]
If you see a standard Apache 404 error, then you need to fix .htaccess usage
before continuing. If you’re are using IIS with the URL Rewrite Module, import the following:

	1
2

	 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^.*$ index.php [NC,L]

You now have a working skeleton application and we can start adding the specifics
for our application.

Error reporting

Optionally, you can use the APPLICATION_ENV setting in your virtualhost to
let PHP output all its errors to the browser. This can be useful when during
development of your application.

Edit index.php from the zf2-tutorial/public/ directory and change it to
the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 <?php

 /**
 * Display all errors when APPLICATION_ENV is development.
 */
 if ($_SERVER['APPLICATION_ENV'] == 'development') {
 error_reporting(E_ALL);
 ini_set("display_errors", 1);
 }

 /**
 * This makes our life easier when dealing with paths. Everything is relative
 * to the application root now.
 */
 chdir(dirname(__DIR__));

 // Setup autoloading
 require 'init_autoloader.php';

 // Run the application!
 Zend\Mvc\Application::init(require 'config/application.config.php')->run();

 [image: Edit this document]

 Modules

Modules

Zend Framework 2 uses a module system and you organise your main
application-specific code within each module. The Application module provided by
the skeleton is used to provide bootstrapping, error and routing configuration to
the whole application. It is usually used to provide application level
controllers for, say, the home page of an application, but we are not going to
use the default one provided in this tutorial as we want our album list to be
the home page, which will live in our own module.

We are going to put all our code into the Album module which will contain our
controllers, models, forms and views, along with configuration. We’ll also tweak
the Application module as required.

Let’s start with the directories required.

Setting up the Album module

Start by creating a directory called Album under module with the following
subdirectories to hold the module’s files:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 zf2-tutorial/
 /module
 /Album
 /config
 /src
 /Album
 /Controller
 /Form
 /Model
 /view
 /album
 /album

As you can see the Album module has separate directories for the different
types of files we will have. The PHP files that contain classes within the
Album namespace live in the src/Album directory so that we can have
multiple namespaces within our module should we require it. The view directory
also has a sub-folder called album for our module’s view scripts.

In order to load and configure a module, Zend Framework 2 has a
ModuleManager. This will look for Module.php in the root of the module
directory (module/Album) and expect to find a class called Album\Module
within it. That is, the classes within a given module will have the namespace of
the module’s name, which is the directory name of the module.

Create Module.php in the Album module:
Create a file called Module.php under zf2-tutorial/module/Album:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 namespace Album;

 class Module
 {
 public function getAutoloaderConfig()
 {
 return array(
 'Zend\Loader\ClassMapAutoloader' => array(
 __DIR__ . '/autoload_classmap.php',
),
 'Zend\Loader\StandardAutoloader' => array(
 'namespaces' => array(
 __NAMESPACE__ => __DIR__ . '/src/' . __NAMESPACE__,
),
),
);
 }

 public function getConfig()
 {
 return include __DIR__ . '/config/module.config.php';
 }
 }

The ModuleManager will call getAutoloaderConfig() and getConfig()
automatically for us.

Autoloading files

Our getAutoloaderConfig() method returns an array that is compatible with
ZF2’s AutoloaderFactory. We configure it so that we add a class map file to
the ClassMapAutoloader and also add this module’s namespace to the
StandardAutoloader. The standard autoloader requires a namespace and the
path where to find the files for that namespace. It is PSR-0 compliant and so
classes map directly to files as per the PSR-0 rules [https://github.com/php-fig/fig-standards/blob/master/accepted/PSR-0.md].

As we are in development, we don’t need to load files via the classmap, so we provide an empty array for the
classmap autoloader. Create a file called autoload_classmap.php under zf2-tutorial/module/Album:

	1

	 return array();

As this is an empty array, whenever the autoloader looks for a class within the
Album namespace, it will fall back to the to StandardAutoloader for us.

Note

If you are using Composer, you could instead just create an empty
getAutoloaderConfig() { } and add to composer.json:

	1
2
3

	 "autoload": {
 "psr-0": { "Album": "module/Album/src/" }
 },

If you go this way, then you need to run php composer.phar update to update
the composer autoloading files.

Configuration

Having registered the autoloader, let’s have a quick look at the getConfig()
method in Album\Module. This method simply loads the
config/module.config.php file.

Create a file called module.config.php under zf2-tutorial/module/Album/config:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	 return array(
 'controllers' => array(
 'invokables' => array(
 'Album\Controller\Album' => 'Album\Controller\AlbumController',
),
),
 'view_manager' => array(
 'template_path_stack' => array(
 'album' => __DIR__ . '/../view',
),
),
);

The config information is passed to the relevant components by the
ServiceManager. We need two initial sections: controllers and
view_manager. The controllers section provides a list of all the controllers
provided by the module. We will need one controller, AlbumController, which
we’ll reference as Album\Controller\Album. The controller key must
be unique across all modules, so we prefix it with our module name.

Within the view_manager section, we add our view directory to the
TemplatePathStack configuration. This will allow it to find the view scripts for
the Album module that are stored in our view/ directory.

Informing the application about our new module

We now need to tell the ModuleManager that this new module exists. This is done
in the application’s config/application.config.php file which is provided by the
skeleton application. Update this file so that its modules section contains the
Album module as well, so the file now looks like this:

(Changes required are highlighted using comments.)

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 return array(
 'modules' => array(
 'Application',
 'Album', // <-- Add this line
),
 'module_listener_options' => array(
 'config_glob_paths' => array(
 'config/autoload/{,*.}{global,local}.php',
),
 'module_paths' => array(
 './module',
 './vendor',
),
),
);

As you can see, we have added our Album module into the list of modules
after the Application module.

We have now set up the module ready for putting our custom code into it.

 [image: Edit this document]

 Routing and controllers

Routing and controllers

We will build a very simple inventory system to display our album
collection. The home page will list our collection and allow us to add, edit and
delete albums. Hence the following pages are required:

	Page
	Description

	Home
	This will display the list of albums and provide links to
edit and delete them. Also, a link to enable adding new
albums will be provided.

	Add new album
	This page will provide a form for adding a new album.

	Edit album
	This page will provide a form for editing an album.

	Delete album
	This page will confirm that we want to delete an album and
then delete it.

Before we set up our files, it’s important to understand how the framework
expects the pages to be organised. Each page of the application is known as an
action and actions are grouped into controllers within modules. Hence, you
would generally group related actions into a controller; for instance, a news
controller might have actions of current, archived and view.

As we have four pages that all apply to albums, we will group them in a single
controller AlbumController within our Album module as four actions. The
four actions will be:

	Page
	Controller
	Action

	Home
	AlbumController
	index

	Add new album
	AlbumController
	add

	Edit album
	AlbumController
	edit

	Delete album
	AlbumController
	delete

The mapping of a URL to a particular action is done using routes that are defined
in the module’s module.config.php file. We will add a route for our album
actions. This is the updated module config file with the new code highlighted.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	 return array(
 'controllers' => array(
 'invokables' => array(
 'Album\Controller\Album' => 'Album\Controller\AlbumController',
),
),

 // The following section is new and should be added to your file
 'router' => array(
 'routes' => array(
 'album' => array(
 'type' => 'segment',
 'options' => array(
 'route' => '/album[/][:action][/:id]',
 'constraints' => array(
 'action' => '[a-zA-Z][a-zA-Z0-9_-]*',
 'id' => '[0-9]+',
),
 'defaults' => array(
 'controller' => 'Album\Controller\Album',
 'action' => 'index',
),
),
),
),
),

 'view_manager' => array(
 'template_path_stack' => array(
 'album' => __DIR__ . '/../view',
),
),
);

The name of the route is ‘album’ and has a type of ‘segment’. The segment route
allows us to specify placeholders in the URL pattern (route) that will be mapped
to named parameters in the matched route. In this case, the route is
``/album[/:action][/:id]`` which will match any URL that starts with
/album. The next segment will be an optional action name, and then finally
the next segment will be mapped to an optional id. The square brackets indicate
that a segment is optional. The constraints section allows us to ensure that the
characters within a segment are as expected, so we have limited actions to
starting with a letter and then subsequent characters only being alphanumeric,
underscore or hyphen. We also limit the id to a number.

This route allows us to have the following URLs:

	URL
	Page
	Action

	/album
	Home (list of albums)
	index

	/album/add
	Add new album
	add

	/album/edit/2
	Edit album with an id of 2
	edit

	/album/delete/4
	Delete album with an id of 4
	delete

Create the controller

We are now ready to set up our controller. In Zend Framework 2, the controller
is a class that is generally called {Controller name}Controller. Note that
{Controller name} must start with a capital letter. This class lives in a file
called {Controller name}Controller.php within the Controller directory for the
module. In our case that is module/Album/src/Album/Controller. Each action is
a public method within the controller class that is named {action name}Action.
In this case {action name} should start with a lower case letter.

Note

This is by convention. Zend Framework 2 doesn’t provide many
restrictions on controllers other than that they must implement the
Zend\Stdlib\Dispatchable interface. The framework provides two abstract
classes that do this for us: Zend\Mvc\Controller\AbstractActionController
and Zend\Mvc\Controller\AbstractRestfulController. We’ll be using the
standard AbstractActionController, but if you’re intending to write a
RESTful web service, AbstractRestfulController may be useful.

Let’s go ahead and create our controller class AlbumController.php at zf2-tutorials/module/Album/src/Album/Controller :

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 namespace Album\Controller;

 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;

 class AlbumController extends AbstractActionController
 {
 public function indexAction()
 {
 }

 public function addAction()
 {
 }

 public function editAction()
 {
 }

 public function deleteAction()
 {
 }
 }

Note

We have already informed the module about our controller in the
‘controller’ section of module/Album/config/module.config.php.

We have now set up the four actions that we want to use. They won’t work yet
until we set up the views. The URLs for each action are:

	URL
	Method called

	http://zf2-tutorial.localhost/album
	Album\Controller\AlbumController::indexAction

	http://zf2-tutorial.localhost/album/add
	Album\Controller\AlbumController::addAction

	http://zf2-tutorial.localhost/album/edit
	Album\Controller\AlbumController::editAction

	http://zf2-tutorial.localhost/album/delete
	Album\Controller\AlbumController::deleteAction

We now have a working router and the actions are set up for each page of our
application.

It’s time to build the view and the model layer.

Initialise the view scripts

To integrate the view into our application all we need to do is create some view
script files. These files will be executed by the DefaultViewStrategy and will be
passed any variables or view models that are returned from the controller action
method. These view scripts are stored in our module’s views directory within a
directory named after the controller. Create these four empty files now:

	module/Album/view/album/album/index.phtml

	module/Album/view/album/album/add.phtml

	module/Album/view/album/album/edit.phtml

	module/Album/view/album/album/delete.phtml

We can now start filling everything in, starting with our database and models.

 [image: Edit this document]

 Database and models

Database and models

The database

Now that we have the Album module set up with controller action methods and
view scripts, it is time to look at the model section of our application.
Remember that the model is the part that deals with the application’s core
purpose (the so-called “business rules”) and, in our case, deals with the
database. We will make use of the Zend Framework class
Zend\Db\TableGateway\TableGateway which is used to find, insert, update and
delete rows from a database table.

We are going to use MySQL, via PHP’s PDO driver, so create a database called
zf2tutorial, and run these SQL statements to create the album table with some
data in it.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 CREATE TABLE album (
 id int(11) NOT NULL auto_increment,
 artist varchar(100) NOT NULL,
 title varchar(100) NOT NULL,
 PRIMARY KEY (id)
);
 INSERT INTO album (artist, title)
 VALUES ('The Military Wives', 'In My Dreams');
 INSERT INTO album (artist, title)
 VALUES ('Adele', '21');
 INSERT INTO album (artist, title)
 VALUES ('Bruce Springsteen', 'Wrecking Ball (Deluxe)');
 INSERT INTO album (artist, title)
 VALUES ('Lana Del Rey', 'Born To Die');
 INSERT INTO album (artist, title)
 VALUES ('Gotye', 'Making Mirrors');

(The test data chosen happens to be the Bestsellers on Amazon UK at the time of
writing!)

We now have some data in a database and can write a very simple model for it.

The model files

Zend Framework does not provide a Zend\Model component because the model is your
business logic and it’s up to you to decide how you want it to work. There are
many components that you can use for this depending on your needs. One approach
is to have model classes represent each entity in your application and then
use mapper objects that load and save entities to the database. Another is to
use an Object-relational mapping (ORM) technology, such as Doctrine or Propel.

For this tutorial, we are going to create a very simple model by creating an
AlbumTable class that uses the Zend\Db\TableGateway\TableGateway class
in which each album object is an Album object (known as an entity). This is an
implementation of the Table Data Gateway design pattern to allow for interfacing
with data in a database table. Be aware though that the Table Data Gateway
pattern can become limiting in larger systems. There is also a temptation to put
database access code into controller action methods as these are exposed by
Zend\Db\TableGateway\AbstractTableGateway. Don’t do this!

Let’s start by creating a file called Album.php under module/Album/src/Album/Model:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 namespace Album\Model;

 class Album
 {
 public $id;
 public $artist;
 public $title;

 public function exchangeArray($data)
 {
 $this->id = (!empty($data['id'])) ? $data['id'] : null;
 $this->artist = (!empty($data['artist'])) ? $data['artist'] : null;
 $this->title = (!empty($data['title'])) ? $data['title'] : null;
 }
 }

Our Album entity object is a simple PHP class. In order to work with
Zend\Db’s TableGateway class, we need to implement the exchangeArray()
method. This method simply copies the data from the passed in array to our entity’s
properties. We will add an input filter for use with our form later.

Next, we create our AlbumTable.php file in module/Album/src/Album/Model directory like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	 namespace Album\Model;

 use Zend\Db\TableGateway\TableGateway;

 class AlbumTable
 {
 protected $tableGateway;

 public function __construct(TableGateway $tableGateway)
 {
 $this->tableGateway = $tableGateway;
 }

 public function fetchAll()
 {
 $resultSet = $this->tableGateway->select();
 return $resultSet;
 }

 public function getAlbum($id)
 {
 $id = (int) $id;
 $rowset = $this->tableGateway->select(array('id' => $id));
 $row = $rowset->current();
 if (!$row) {
 throw new \Exception("Could not find row $id");
 }
 return $row;
 }

 public function saveAlbum(Album $album)
 {
 $data = array(
 'artist' => $album->artist,
 'title' => $album->title,
);

 $id = (int) $album->id;
 if ($id == 0) {
 $this->tableGateway->insert($data);
 } else {
 if ($this->getAlbum($id)) {
 $this->tableGateway->update($data, array('id' => $id));
 } else {
 throw new \Exception('Album id does not exist');
 }
 }
 }

 public function deleteAlbum($id)
 {
 $this->tableGateway->delete(array('id' => (int) $id));
 }
 }

There’s a lot going on here. Firstly, we set the protected property $tableGateway
to the TableGateway instance passed in the constructor. We will use this to
perform operations on the database table for our albums.

We then create some helper methods that our application will use to interface
with the table gateway. fetchAll() retrieves all albums rows from the
database as a ResultSet, getAlbum() retrieves a single row as an
Album object, saveAlbum() either creates a new row in the database or
updates a row that already exists and deleteAlbum() removes the row
completely. The code for each of these methods is, hopefully, self-explanatory.

Using ServiceManager to configure the table gateway and inject into the AlbumTable

In order to always use the same instance of our AlbumTable, we will use the
ServiceManager to define how to create one. This is most easily done in the
Module class where we create a method called getServiceConfig() which is
automatically called by the ModuleManager and applied to the ServiceManager.
We’ll then be able to retrieve it in our controller when we need it.

To configure the ServiceManager, we can either supply the name of the class
to be instantiated or a factory (closure or callback) that instantiates the
object when the ServiceManager needs it. We start by implementing
getServiceConfig() to provide a factory that creates an AlbumTable. Add
this method to the bottom of the Module.php file in module/Album.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	 namespace Album;

 // Add these import statements:
 use Album\Model\Album;
 use Album\Model\AlbumTable;
 use Zend\Db\ResultSet\ResultSet;
 use Zend\Db\TableGateway\TableGateway;

 class Module
 {
 // getAutoloaderConfig() and getConfig() methods here

 // Add this method:
 public function getServiceConfig()
 {
 return array(
 'factories' => array(
 'Album\Model\AlbumTable' => function($sm) {
 $tableGateway = $sm->get('AlbumTableGateway');
 $table = new AlbumTable($tableGateway);
 return $table;
 },
 'AlbumTableGateway' => function ($sm) {
 $dbAdapter = $sm->get('Zend\Db\Adapter\Adapter');
 $resultSetPrototype = new ResultSet();
 $resultSetPrototype->setArrayObjectPrototype(new Album());
 return new TableGateway('album', $dbAdapter, null, $resultSetPrototype);
 },
),
);
 }
 }

This method returns an array of factories that are all merged together by
the ModuleManager before passing to the ServiceManager. The factory
for Album\Model\AlbumTable uses the ServiceManager to create an
AlbumTableGateway to pass to the AlbumTable. We also tell the
ServiceManager that an AlbumTableGateway is created by getting a
Zend\Db\Adapter\Adapter (also from the ServiceManager) and using it
to create a TableGateway object. The TableGateway is told to use an
Album object whenever it creates a new result row. The TableGateway
classes use the prototype pattern for creation of result sets and entities.
This means that instead of instantiating when required, the system clones a
previously instantiated object. See
PHP Constructor Best Practices and the Prototype Pattern [http://ralphschindler.com/2012/03/09/php-constructor-best-practices-and-the-prototype-pattern]
for more details.

Finally, we need to configure the ServiceManager so that it knows how to get a
Zend\Db\Adapter\Adapter. This is done using a factory called
Zend\Db\Adapter\AdapterServiceFactory which we can configure within the
merged config system. Zend Framework 2’s ModuleManager merges all the
configuration from each module’s module.config.php file and then merges in
the files in config/autoload (*.global.php and then *.local.php
files). We’ll add our database configuration information to global.php which
you should commit to your version control system. You can use local.php
(outside of the VCS) to store the credentials for your database if you want to.
Modify config/autoload/global.php (in the Zend Skeleton root, not inside the
Album module) with following code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 return array(
 'db' => array(
 'driver' => 'Pdo',
 'dsn' => 'mysql:dbname=zf2tutorial;host=localhost',
 'driver_options' => array(
 PDO::MYSQL_ATTR_INIT_COMMAND => 'SET NAMES \'UTF8\''
),
),
 'service_manager' => array(
 'factories' => array(
 'Zend\Db\Adapter\Adapter'
 => 'Zend\Db\Adapter\AdapterServiceFactory',
),
),
);

You should put your database credentials in config/autoload/local.php so
that they are not in the git repository (as local.php is ignored):

	1
2
3
4
5
6

	 return array(
 'db' => array(
 'username' => 'YOUR USERNAME HERE',
 'password' => 'YOUR PASSWORD HERE',
),
);

Back to the controller

Now that the ServiceManager can create an AlbumTable instance for us, we
can add a method to the controller to retrieve it. Add getAlbumTable() to
the AlbumController class:

	1
2
3
4
5
6
7
8
9

	 // module/Album/src/Album/Controller/AlbumController.php:
 public function getAlbumTable()
 {
 if (!$this->albumTable) {
 $sm = $this->getServiceLocator();
 $this->albumTable = $sm->get('Album\Model\AlbumTable');
 }
 return $this->albumTable;
 }

You should also add:

	1

	 protected $albumTable;

to the top of the class.

We can now call getAlbumTable() from within our controller whenever we need
to interact with our model.

If the service locator was configured correctly in Module.php, then we
should get an instance of Album\Model\AlbumTable when calling getAlbumTable().

Listing albums

In order to list the albums, we need to retrieve them from the model and pass
them to the view. To do this, we fill in indexAction() within
AlbumController. Update the AlbumController’s indexAction() like
this:

	1
2
3
4
5
6
7
8
9

	 // module/Album/src/Album/Controller/AlbumController.php:
 // ...
 public function indexAction()
 {
 return new ViewModel(array(
 'albums' => $this->getAlbumTable()->fetchAll(),
));
 }
 // ...

With Zend Framework 2, in order to set variables in the view, we return a
ViewModel instance where the first parameter of the constructor is an array
from the action containing data we need. These are then automatically passed to
the view script. The ViewModel object also allows us to change the view
script that is used, but the default is to use {controller name}/{action
name}. We can now fill in the index.phtml view script:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

	 <?php
 // module/Album/view/album/album/index.phtml:

 $title = 'My albums';
 $this->headTitle($title);
 ?>
 <h1><?php echo $this->escapeHtml($title); ?></h1>
 <p>
 <a href="<?php echo $this->url('album', array('action'=>'add'));?>">Add new album
 </p>

 <table class="table">
 <tr>
 <th>Title</th>
 <th>Artist</th>
 <th> </th>
 </tr>
 <?php foreach ($albums as $album) : ?>
 <tr>
 <td><?php echo $this->escapeHtml($album->title);?></td>
 <td><?php echo $this->escapeHtml($album->artist);?></td>
 <td>
 <a href="<?php echo $this->url('album',
 array('action'=>'edit', 'id' => $album->id));?>">Edit
 <a href="<?php echo $this->url('album',
 array('action'=>'delete', 'id' => $album->id));?>">Delete
 </td>
 </tr>
 <?php endforeach; ?>
 </table>

The first thing we do is to set the title for the page (used in the layout) and
also set the title for the <head> section using the headTitle() view
helper which will display in the browser’s title bar. We then create a link to
add a new album.

The url() view helper is provided by Zend Framework 2 and is used to create
the links we need. The first parameter to url() is the route name we wish to use
for construction of the URL, and the second parameter is an array of all the
variables to fit into the placeholders to use. In this case we use our ‘album’
route which is set up to accept two placeholder variables: action and id.

We iterate over the $albums that we assigned from the controller action. The
Zend Framework 2 view system automatically ensures that these variables are
extracted into the scope of the view script, so that we don’t have to worry
about prefixing them with $this-> as we used to have to do with Zend
Framework 1; however you can do so if you wish.

We then create a table to display each album’s title and artist, and provide
links to allow for editing and deleting the record. A standard foreach: loop
is used to iterate over the list of albums, and we use the alternate form using
a colon and endforeach; as it is easier to scan than to try and match up
braces. Again, the url() view helper is used to create the edit and delete
links.

Note

We always use the escapeHtml() view helper to help protect
ourselves from Cross Site Scripting (XSS) vulnerabilities (see http://en.wikipedia.org/wiki/Cross-site_scripting).

If you open http://zf2-tutorial.localhost/album you should see this:

[image: ../_images/user-guide.database-and-models.album-list.png]

 [image: Edit this document]

 Styling and Translations

Styling and Translations

We’ve picked up the SkeletonApplication’s styling, which is fine, but we need to
change the title and remove the copyright message.

The ZendSkeletonApplication is set up to use Zend\I18n’s translation
functionality for all the text. It uses .po files that live in
module/Application/language, and you need to use poedit [http://www.poedit.net/download.php] to change the text. Start poedit and
open module/Application/language/en_US.po. Click on “Skeleton Application” in the
list of Original strings and then type in “Tutorial” as the translation.

[image: ../_images/user-guide.styling-and-translations.poedit.png]
Press Save in the toolbar and poedit will create an en_US.mo file for us.
If you find that no .mo file is generated, check Preferences -> Editor -> Behavior
and see if the checkbox marked Automatically compile .mo file on save is checked.

To remove the copyright message, we need to edit the Application module’s
layout.phtml view script:

	1
2
3
4

	 // module/Application/view/layout/layout.phtml:
 // Remove this line:
 <p>© 2005 - 2013 by Zend Technologies Ltd. <?php echo $this->translate('All
 rights reserved.') ?></p>

The page now looks ever so slightly better now!

[image: ../_images/user-guide.styling-and-translations.translated-image.png]

 [image: Edit this document]

 Forms and actions

Forms and actions

Adding new albums

We can now code up the functionality to add new albums. There are two bits to
this part:

	Display a form for user to provide details

	Process the form submission and store to database

We use Zend\Form to do this. The Zend\Form component manages the form
and, form validation, we add a Zend\InputFilter to our Album entity. We
start by creating a new class Album\Form\AlbumForm that extends from
Zend\Form\Form to define our form.
Create a file called AlbumForm.php in module/Album/src/Album/Form:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

	 namespace Album\Form;

 use Zend\Form\Form;

 class AlbumForm extends Form
 {
 public function __construct($name = null)
 {
 // we want to ignore the name passed
 parent::__construct('album');

 $this->add(array(
 'name' => 'id',
 'type' => 'Hidden',
));
 $this->add(array(
 'name' => 'title',
 'type' => 'Text',
 'options' => array(
 'label' => 'Title',
),
));
 $this->add(array(
 'name' => 'artist',
 'type' => 'Text',
 'options' => array(
 'label' => 'Artist',
),
));
 $this->add(array(
 'name' => 'submit',
 'type' => 'Submit',
 'attributes' => array(
 'value' => 'Go',
 'id' => 'submitbutton',
),
));
 }
 }

Within the constructor of AlbumForm we do several things. First, we set the name
of the form as we call the parent’s constructor. We then set the form’s method, in this case, post.
Finally, we create four form elements: the id, title, artist, and submit button. For each item we set
various attributes and options, including the label to be displayed.

We also need to set up validation for this form. In Zend Framework 2 this is
done using an input filter, which can either be standalone or defined within any class
that implements the InputFilterAwareInterface interface, such as a model entity. In our case, we are
going to add the input filter to the Album class, which resides in the Album.php file in module/Album/src/Album/Model:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

	 namespace Album\Model;

 // Add these import statements
 use Zend\InputFilter\InputFilter;
 use Zend\InputFilter\InputFilterAwareInterface;
 use Zend\InputFilter\InputFilterInterface;

 class Album implements InputFilterAwareInterface
 {
 public $id;
 public $artist;
 public $title;
 protected $inputFilter; // <-- Add this variable

 public function exchangeArray($data)
 {
 $this->id = (isset($data['id'])) ? $data['id'] : null;
 $this->artist = (isset($data['artist'])) ? $data['artist'] : null;
 $this->title = (isset($data['title'])) ? $data['title'] : null;
 }

 // Add content to these methods:
 public function setInputFilter(InputFilterInterface $inputFilter)
 {
 throw new \Exception("Not used");
 }

 public function getInputFilter()
 {
 if (!$this->inputFilter) {
 $inputFilter = new InputFilter();

 $inputFilter->add(array(
 'name' => 'id',
 'required' => true,
 'filters' => array(
 array('name' => 'Int'),
),
));

 $inputFilter->add(array(
 'name' => 'artist',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
),
 'validators' => array(
 array(
 'name' => 'StringLength',
 'options' => array(
 'encoding' => 'UTF-8',
 'min' => 1,
 'max' => 100,
),
),
),
));

 $inputFilter->add(array(
 'name' => 'title',
 'required' => true,
 'filters' => array(
 array('name' => 'StripTags'),
 array('name' => 'StringTrim'),
),
 'validators' => array(
 array(
 'name' => 'StringLength',
 'options' => array(
 'encoding' => 'UTF-8',
 'min' => 1,
 'max' => 100,
),
),
),
));

 $this->inputFilter = $inputFilter;
 }

 return $this->inputFilter;
 }
 }

The InputFilterAwareInterface defines two methods: setInputFilter() and
getInputFilter(). We only need to implement getInputFilter() so we
simply throw an exception in setInputFilter().

Within getInputFilter(), we instantiate an InputFilter and then add the
inputs that we require. We add one input for each property that we wish to
filter or validate. For the id field we add an Int filter as we only
need integers. For the text elements, we add two filters, StripTags and
StringTrim, to remove unwanted HTML and unnecessary white space. We also set
them to be required and add a StringLength validator to ensure that the
user doesn’t enter more characters than we can store into the database.

We now need to get the form to display and then process it on submission. This
is done within the AlbumController’s addAction():

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	 // module/Album/src/Album/Controller/AlbumController.php:

 //...
 use Zend\Mvc\Controller\AbstractActionController;
 use Zend\View\Model\ViewModel;
 use Album\Model\Album; // <-- Add this import
 use Album\Form\AlbumForm; // <-- Add this import
 //...

 // Add content to this method:
 public function addAction()
 {
 $form = new AlbumForm();
 $form->get('submit')->setValue('Add');

 $request = $this->getRequest();
 if ($request->isPost()) {
 $album = new Album();
 $form->setInputFilter($album->getInputFilter());
 $form->setData($request->getPost());

 if ($form->isValid()) {
 $album->exchangeArray($form->getData());
 $this->getAlbumTable()->saveAlbum($album);

 // Redirect to list of albums
 return $this->redirect()->toRoute('album');
 }
 }
 return array('form' => $form);
 }
 //...

After adding the AlbumForm to the use list, we implement addAction().
Let’s look at the addAction() code in a little more detail:

	1
2

	 $form = new AlbumForm();
 $form->get('submit')->setValue('Add');

We instantiate AlbumForm and set the label on the submit button to “Add”. We
do this here as we’ll want to re-use the form when editing an album and will use
a different label.

	1
2
3
4
5
6

	 $request = $this->getRequest();
 if ($request->isPost()) {
 $album = new Album();
 $form->setInputFilter($album->getInputFilter());
 $form->setData($request->getPost());
 if ($form->isValid()) {

If the Request object’s isPost() method is true, then the form has been
submitted and so we set the form’s input filter from an album instance. We then
set the posted data to the form and check to see if it is valid using the
isValid() member function of the form.

	1
2

	 $album->exchangeArray($form->getData());
 $this->getAlbumTable()->saveAlbum($album);

If the form is valid, then we grab the data from the form and store to the
model using saveAlbum().

	1
2

	 // Redirect to list of albums
 return $this->redirect()->toRoute('album');

After we have saved the new album row, we redirect back to the list of albums
using the Redirect controller plugin.

	1

	 return array('form' => $form);

Finally, we return the variables that we want assigned to the view. In this
case, just the form object. Note that Zend Framework 2 also allows you to simply
return an array containing the variables to be assigned to the view and it will
create a ViewModel behind the scenes for you. This saves a little typing.

We now need to render the form in the add.phtml view script:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 <?php
 // module/Album/view/album/album/add.phtml:

 $title = 'Add new album';
 $this->headTitle($title);
 ?>
 <h1><?php echo $this->escapeHtml($title); ?></h1>
 <?php
 $form->setAttribute('action', $this->url('album', array('action' => 'add')));
 $form->prepare();

 echo $this->form()->openTag($form);
 echo $this->formHidden($form->get('id'));
 echo $this->formRow($form->get('title'));
 echo $this->formRow($form->get('artist'));
 echo $this->formSubmit($form->get('submit'));
 echo $this->form()->closeTag();

Again, we display a title as before and then we render the form. Zend Framework
provides some view helpers to make this a little easier. The form() view
helper has an openTag() and closeTag() method which we use to open and
close the form. Then for each element with a label, we can use formRow(),
but for the two elements that are standalone, we use formHidden() and
formSubmit().

[image: ../_images/user-guide.forms-and-actions.add-album-form.png]
Alternatively, the process of rendering the form can be simplified by using the
bundled formCollection view helper. For example, in the view script above replace
all the form-rendering echo statements with:

	1

	 echo $this->formCollection($form);

Note: You still need to call the openTag and closeTag methods of the form. You replace
the other echo statements with the call to formCollection, above.

This will iterate over the form structure, calling the appropriate label, element
and error view helpers for each element, but you still have to wrap formCollection($form) with the open and close form tags.
This helps reduce the complexity of your view script in situations where the default
HTML rendering of the form is acceptable.

You should now be able to use the “Add new album” link on the home page of the
application to add a new album record.

Editing an album

Editing an album is almost identical to adding one, so the code is very similar.
This time we use editAction() in the AlbumController:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

	 // module/Album/src/Album/Controller/AlbumController.php:
 //...

 // Add content to this method:
 public function editAction()
 {
 $id = (int) $this->params()->fromRoute('id', 0);
 if (!$id) {
 return $this->redirect()->toRoute('album', array(
 'action' => 'add'
));
 }

 // Get the Album with the specified id. An exception is thrown
 // if it cannot be found, in which case go to the index page.
 try {
 $album = $this->getAlbumTable()->getAlbum($id);
 }
 catch (\Exception $ex) {
 return $this->redirect()->toRoute('album', array(
 'action' => 'index'
));
 }

 $form = new AlbumForm();
 $form->bind($album);
 $form->get('submit')->setAttribute('value', 'Edit');

 $request = $this->getRequest();
 if ($request->isPost()) {
 $form->setInputFilter($album->getInputFilter());
 $form->setData($request->getPost());

 if ($form->isValid()) {
 $this->getAlbumTable()->saveAlbum($album);

 // Redirect to list of albums
 return $this->redirect()->toRoute('album');
 }
 }

 return array(
 'id' => $id,
 'form' => $form,
);
 }
 //...

This code should look comfortably familiar. Let’s look at the differences from
adding an album. Firstly, we look for the id that is in the matched route
and use it to load the album to be edited:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	 $id = (int) $this->params()->fromRoute('id', 0);
 if (!$id) {
 return $this->redirect()->toRoute('album', array(
 'action' => 'add'
));
 }

 // Get the album with the specified id. An exception is thrown
 // if it cannot be found, in which case go to the index page.
 try {
 $album = $this->getAlbumTable()->getAlbum($id);
 }
 catch (\Exception $ex) {
 return $this->redirect()->toRoute('album', array(
 'action' => 'index'
));
 }

params is a controller plugin that provides a convenient way to retrieve
parameters from the matched route. We use it to retrieve the id from the
route we created in the modules’ module.config.php. If the id is zero,
then we redirect to the add action, otherwise, we continue by getting the album
entity from the database.

We have to check to make sure that the Album with the specified id can actually be found.
If it cannot, then the data access method throws an exception. We catch that exception and re-route the user
to the index page.

	1
2
3

	 $form = new AlbumForm();
 $form->bind($album);
 $form->get('submit')->setAttribute('value', 'Edit');

The form’s bind() method attaches the model to the form. This is used in two
ways:

	When displaying the form, the initial values for each element are extracted
from the model.

	After successful validation in isValid(), the data from the form is put back
into the model.

These operations are done using a hydrator object. There are a number of
hydrators, but the default one is Zend\Stdlib\Hydrator\ArraySerializable
which expects to find two methods in the model: getArrayCopy() and
exchangeArray(). We have already written exchangeArray() in our
Album entity, so just need to write getArrayCopy():

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 // module/Album/src/Album/Model/Album.php:
 // ...
 public function exchangeArray($data)
 {
 $this->id = (isset($data['id'])) ? $data['id'] : null;
 $this->artist = (isset($data['artist'])) ? $data['artist'] : null;
 $this->title = (isset($data['title'])) ? $data['title'] : null;
 }

 // Add the following method:
 public function getArrayCopy()
 {
 return get_object_vars($this);
 }
 // ...

As a result of using bind() with its hydrator, we do not need to populate the
form’s data back into the $album as that’s already been done, so we can just
call the mappers’ saveAlbum() to store the changes back to the database.

The view template, edit.phtml, looks very similar to the one for adding an
album:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 <?php
 // module/Album/view/album/album/edit.phtml:

 $title = 'Edit album';
 $this->headTitle($title);
 ?>
 <h1><?php echo $this->escapeHtml($title); ?></h1>

 <?php
 $form = $this->form;
 $form->setAttribute('action', $this->url(
 'album',
 array(
 'action' => 'edit',
 'id' => $this->id,
)
));
 $form->prepare();

 echo $this->form()->openTag($form);
 echo $this->formHidden($form->get('id'));
 echo $this->formRow($form->get('title'));
 echo $this->formRow($form->get('artist'));
 echo $this->formSubmit($form->get('submit'));
 echo $this->form()->closeTag();

The only changes are to use the ‘Edit Album’ title and set the form’s action to
the ‘edit’ action too.

You should now be able to edit albums.

Deleting an album

To round out our application, we need to add deletion. We have a Delete link
next to each album on our list page and the naive approach would be to do a
delete when it’s clicked. This would be wrong. Remembering our HTTP spec, we
recall that you shouldn’t do an irreversible action using GET and should use
POST instead.

We shall show a confirmation form when the user clicks delete and if they then
click “yes”, we will do the deletion. As the form is trivial, we’ll code it
directly into our view (Zend\Form is, after all, optional!).

Let’s start with the action code in AlbumController::deleteAction():

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	 // module/Album/src/Album/Controller/AlbumController.php:
 //...
 // Add content to the following method:
 public function deleteAction()
 {
 $id = (int) $this->params()->fromRoute('id', 0);
 if (!$id) {
 return $this->redirect()->toRoute('album');
 }

 $request = $this->getRequest();
 if ($request->isPost()) {
 $del = $request->getPost('del', 'No');

 if ($del == 'Yes') {
 $id = (int) $request->getPost('id');
 $this->getAlbumTable()->deleteAlbum($id);
 }

 // Redirect to list of albums
 return $this->redirect()->toRoute('album');
 }

 return array(
 'id' => $id,
 'album' => $this->getAlbumTable()->getAlbum($id)
);
 }
 //...

As before, we get the id from the matched route, and check the request
object’s isPost() to determine whether to show the confirmation page or to
delete the album. We use the table object to delete the row using the
deleteAlbum() method and then redirect back the list of albums. If the
request is not a POST, then we retrieve the correct database record and assign
to the view, along with the id.

The view script is a simple form:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	 <?php
 // module/Album/view/album/album/delete.phtml:

 $title = 'Delete album';
 $this->headTitle($title);
 ?>
 <h1><?php echo $this->escapeHtml($title); ?></h1>

 <p>Are you sure that you want to delete
 '<?php echo $this->escapeHtml($album->title); ?>' by
 '<?php echo $this->escapeHtml($album->artist); ?>'?
 </p>
 <?php
 $url = $this->url('album', array(
 'action' => 'delete',
 'id' => $this->id,
));
 ?>
 <form action="<?php echo $url; ?>" method="post">
 <div>
 <input type="hidden" name="id" value="<?php echo (int) $album->id; ?>" />
 <input type="submit" name="del" value="Yes" />
 <input type="submit" name="del" value="No" />
 </div>
 </form>

In this script, we display a confirmation message to the user and then a form
with “Yes” and “No” buttons. In the action, we checked specifically for the “Yes”
value when doing the deletion.

Ensuring that the home page displays the list of albums

One final point. At the moment, the home page, http://zf2-tutorial.localhost/
doesn’t display the list of albums.

This is due to a route set up in the Application module’s
module.config.php. To change it, open
module/Application/config/module.config.php and find the home route:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 'home' => array(
 'type' => 'Zend\Mvc\Router\Http\Literal',
 'options' => array(
 'route' => '/',
 'defaults' => array(
 'controller' => 'Application\Controller\Index',
 'action' => 'index',
),
),
),

Change the controller from Application\Controller\Index to
Album\Controller\Album:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 'home' => array(
 'type' => 'Zend\Mvc\Router\Http\Literal',
 'options' => array(
 'route' => '/',
 'defaults' => array(
 'controller' => 'Album\Controller\Album', // <-- change here
 'action' => 'index',
),
),
),

That’s it - you now have a fully working application!

 [image: Edit this document]

 Conclusion

Conclusion

This concludes our brief look at building a simple, but fully functional, MVC
application using Zend Framework 2.

In this tutorial we but briefly touched quite a number of different parts of
the framework.

The most important part of applications built with Zend Framework 2 are the
modules, the building blocks of any
MVC ZF2 application.

To ease the work with dependencies inside our applications, we use the
service manager.

To be able to map a request to controllers and their actions, we use
routes.

Data persistence, in most cases, includes using Zend\Db
to communicate with one of the databases. Input data is filtered and validated
with input filters and together with
Zend\Form they provide a strong bridge between
the domain model and the view layer.

Zend\View is responsible for the View in the MVC
stack, together with a vast amount of view helpers.

 [image: Edit this document]

 Zend Framework Tool (ZFTool)

Zend Framework Tool (ZFTool)

ZFTool [https://github.com/zendframework/ZFTool] is a utility module for maintaining modular Zend Framework 2 applications.
It runs from the command line and can be installed as ZF2 module or as PHAR (see below).
This tool gives you the ability to:

	create a ZF2 project, installing a skeleton application;

	create a new module inside an existing ZF2 application;

	get the list of all the modules installed inside an application;

	get the configuration file of a ZF2 application;

	install the ZF2 library choosing a specific version.

To install the ZFTool you can use one of the following methods or you can just download
the PHAR package and use it.

Installation using Composer [http://getcomposer.org]

	Open console (command prompt)

	Go to your application’s directory

	Run composer require zendframework/zftool:dev-master

Manual installation

	Clone using git or download zipball [https://github.com/zendframework/ZFTool/zipball/master]

	Extract to vendor/ZFTool in your ZF2 application

	Enter the vendor/ZFTool folder and execute zf.php as reported below.

Without installation, using the PHAR file

	You don’t need to install ZFTool if you want just use it as a shell command.
You can download zftool.phar [https://packages.zendframework.com/zftool.phar] and use it.

Usage

In the following usage examples, the zf.php command can be replaced with zftool.phar.

Basic information

> zf.php modules [list] show loaded modules

The modules option gives you the list of all the modules installed in a ZF2 application.

> zf.php version | --version display current Zend Framework version

The version option gives you the version number of ZFTool and, if executed from the root
folder of a ZF2 application, the version number of the Zend Framework library used by the application.

Project creation

> zf.php create project <path>

<path> The path of the project to be created

This command installs the ZendSkeletonApplication [https://github.com/zendframework/ZendSkeletonApplication] in the specified path.

Module creation

> zf.php create module <name> [<path>]

<name> The name of the module to be created
<path> The path to the root folder of the ZF2 application (optional)

This command can be used to create a new module inside an existing ZF2 application.
If the path is not provided the ZFTool try to create a new module in the local directory
(only if the local folder contains a ZF2 application).

Classmap generator

> zf.php classmap generate <directory> <classmap file> [--append|-a] [--overwrite|-w]

<directory> The directory to scan for PHP classes (use "." to use current directory)
<classmap file> File name for generated class map file or - for standard output. If not supplied, defaults to
 autoload_classmap.php inside <directory>.
--append | -a Append to classmap file if it exists
--overwrite | -w Whether or not to overwrite existing classmap file

ZF library installation

> zf.php install zf <path> [<version>]

<path> The directory where to install the ZF2 library
<version> The version to install, if not specified uses the last available

This command install the specified version of the ZF2 library in a path. If the version is omitted it
will be used the last stable available. Using this command you can install all the tag version specified
in the ZF2 github [https://github.com/zendframework/zf2] repository (the name used for the version is obtained removing the ‘release-‘ string
from the tag name; for instance, the tag ‘release-2.0.0’ is equivalent to the version number 2.0.0).

Compile the PHAR file

You can create a .phar file containing the ZFTool project. In order to compile ZFTool in a .phar file you need
to execute the following command:

> bin/create-phar

This command will create a zftool.phar file in the bin folder.
You can use and ship only this file to execute all the ZFTool functionalities.
After the zftool.phar creation, we suggest to add the folder bin of ZFTool in your PATH environment. In this
way you can execute the zftool.phar script wherever you are.

 [image: Edit this document]

 Learning Dependency Injection

Learning Dependency Injection

Very brief introduction to Di.

Dependency Injection is a concept that has been talked about in numerous places over the web. For the purposes
of this quickstart, we’ll explain the act of injecting dependencies simply with this below code:

	1

	$b = new B(new A());

Above, A is a dependency of B, and A was injected into B. If you are not familiar with the concept of dependency
injection, here are a couple of great reads: Matthew Weier O’Phinney’s Analogy [http://weierophinney.net/matthew/archives/260-Dependency-Injection-An-analogy.html], Ralph Schindler’s Learning
DI [http://ralphschindler.com/2011/05/18/learning-about-dependency-injection-and-php], or Fabien Potencier’s Series on DI [http://fabien.potencier.org/article/11/what-is-dependency-injection].

Simplest usage case (2 classes, one consumes the other)

In the simplest use case, a developer might have one class (A) that is consumed by another class (B)
through the constructor. By having the dependency injected through the constructor, this requires an object of type
A be instantiated before an object of type B so that A can be injected into B.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	namespace My {

 class A
 {
 /* Some useful functionality */
 }

 class B
 {
 protected $a = null;
 public function __construct(A $a)
 {
 $this->a = $a;
 }
 }
}

To create B by hand, a developer would follow this work flow, or a similar workflow to this:

	1

	$b = new B(new A());

If this workflow becomes repeated throughout your application multiple times, this creates an opportunity where one
might want to DRY [http://en.wikipedia.org/wiki/Don%27t_repeat_yourself] up the code. While there are several ways to do this, using a dependency injection container is
one of these solutions. With Zend’s dependency injection container Zend\Di\Di, the above use
case can be taken care of with no configuration (provided all of your autoloading is already configured properly)
with the following usage:

	1
2

	$di = new Zend\Di\Di;
$b = $di->get('My\B'); // will produce a B object that is consuming an A object

Moreover, by using the Di::get() method, you are ensuring that the same exact object is
returned on subsequent calls. To force new objects to be created on each and every request, one would use the
Di::newInstance() method:

	1

	$b = $di->newInstance('My\B');

Let’s assume for a moment that A requires some configuration before it can be created. Our previous use case is
expanded to this (we’ll throw a 3rd class in for good measure):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

	namespace My {

 class A
 {
 protected $username = null;
 protected $password = null;
 public function __construct($username, $password)
 {
 $this->username = $username;
 $this->password = $password;
 }
 }

 class B
 {
 protected $a = null;
 public function __construct(A $a)
 {
 $this->a = $a;
 }
 }

 class C
 {
 protected $b = null;
 public function __construct(B $b)
 {
 $this->b = $b;
 }
 }

}

With the above, we need to ensure that our Di is capable of setting the A class with a few
configuration values (which are generally scalar in nature). To do this, we need to interact with the
InstanceManager:

	1
2
3

	$di = new Zend\Di\Di;
$di->getInstanceManager()->setProperty('A', 'username', 'MyUsernameValue');
$di->getInstanceManager()->setProperty('A', 'password', 'MyHardToGuessPassword%$#');

Now that our container has values it can use when creating A, and our new goal is to have a C object that
consumes B and in turn consumes A, the usage scenario is still the same:

	1
2
3

	$c = $di->get('My\C');
// or
$c = $di->newInstance('My\C');

Simple enough, but what if we wanted to pass in these parameters at call time? Assuming a default
Di object ($di = new Zend\Di\Di() without any configuration to the
InstanceManager), we could do the following:

	1
2
3
4
5
6
7
8

	$parameters = array(
 'username' => 'MyUsernameValue',
 'password' => 'MyHardToGuessPassword%$#',
);

$c = $di->get('My\C', $parameters);
// or
$c = $di->newInstance('My\C', $parameters);

Constructor injection is not the only supported type of injection. The other most popular method of injection is
also supported: setter injection. Setter injection allows one to have a usage scenario that is the same as our
previous example with the exception, for example, of our B class now looking like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	namespace My {
 class B
 {
 protected $a;
 public function setA(A $a)
 {
 $this->a = $a;
 }
 }
}

Since the method is prefixed with set, and is followed by a capital letter, the Di knows that
this method is used for setter injection, and again, the use case $c = $di->get('C'), will once again know how
to fill the dependencies when needed to create an object of type C.

Other methods are being created to determine what the wirings between classes are, such as interface injection and
annotation based injection.

Simplest Usage Case Without Type-hints

If your code does not have type-hints or you are using 3rd party code that does not have type-hints but does
practice dependency injection, you can still use the Di, but you might find you need to
describe your dependencies explicitly. To do this, you will need to interact with one of the definitions that is
capable of letting a developer describe, with objects, the map between classes. This particular definition is
called the BuilderDefinition and can work with, or in place of, the default RuntimeDefinition.

Definitions are a part of the Di that attempt to describe the relationship between classes so
that Di::newInstance() and Di::get() can know what the dependencies are
that need to be filled for a particular class/object. With no configuration, Di will use the
RuntimeDefinition which uses reflection and the type-hints in your code to determine the dependency map.
Without type-hints, it will assume that all dependencies are scalar or required configuration parameters.

The BuilderDefinition, which can be used in tandem with the RuntimeDefinition (technically, it can be used
in tandem with any definition by way of the AggregateDefinition), allows you to programmatically describe the
mappings with objects. Let’s say for example, our above A/B/C usage scenario, were altered such that class
B now looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	namespace My {
 class B
 {
 protected $a;
 public function setA($a)
 {
 $this->a = $a;
 }
 }
}

You’ll notice the only change is that setA now does not include any type-hinting information.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	use Zend\Di\Di;
use Zend\Di\Definition;
use Zend\Di\Definition\Builder;

// Describe this class:
$builder = new Definition\BuilderDefinition;
$builder->addClass(($class = new Builder\PhpClass));

$class->setName('My\B');
$class->addInjectableMethod(($im = new Builder\InjectableMethod));

$im->setName('setA');
$im->addParameter('a', 'My\A');

// Use both our Builder Definition as well as the default
// RuntimeDefinition, builder first
$aDef = new Definition\AggregateDefinition;
$aDef->addDefinition($builder);
$aDef->addDefinition(new Definition\RuntimeDefinition);

// Now make sure the Di understands it
$di = new Di;
$di->setDefinition($aDef);

// and finally, create C
$parameters = array(
 'username' => 'MyUsernameValue',
 'password' => 'MyHardToGuessPassword%$#',
);

$c = $di->get('My\C', $parameters);

This above usage scenario provides that whatever the code looks like, you can ensure that it works with the
dependency injection container. In an ideal world, all of your code would have the proper type hinting and/or would
be using a mapping strategy that reduces the amount of bootstrapping work that needs to be done in order to have a
full definition that is capable of instantiating all of the objects you might require.

Simplest usage case with Compiled Definition

Without going into the gritty details, as you might expect, PHP at its core is not DI friendly. Out-of-the-box, the
Di uses a RuntimeDefinition which does all class map resolution via PHP’s Reflection
extension. Couple that with the fact that PHP does not have a true application layer capable of storing objects
in-memory between requests, and you get a recipe that is less performant than similar solutions you’ll find in Java
and .Net (where there is an application layer with in-memory object storage.)

To mitigate this shortcoming, Zend\Di has several features built in capable of pre-compiling the most expensive
tasks that surround dependency injection. It is worth noting that the RuntimeDefinition, which is used by
default, is the only definition that does lookups on-demand. The rest of the Definition objects are capable
of being aggregated and stored to disk in a very performant way.

Ideally, 3rd party code will ship with a pre-compiled Definition that will describe the various relationships
and parameter/property needs of each class that is to be instantiated. This Definition would have been built as
part of some deployment or packaging task by this 3rd party. When this is not the case, you can create these
Definitions via any of the Definition types provided with the exception of the RuntimeDefinition. Here
is a breakdown of the job of each definition type:

	AggregateDefinition- Aggregates multiple definitions of various types. When looking for a class, it looks it
up in the order the definitions were provided to this aggregate.

	ArrayDefinition- This definition takes an array of information and exposes it via the interface provided by
Zend\Di\Definition suitable for usage by Di or an AggregateDefinition

	BuilderDefinition- Creates a definition based on an object graph consisting of various Builder\PhpClass
objects and Builder\InjectionMethod objects that describe the mapping needs of the target codebase and …

	Compiler- This is not actually a definition, but produces an ArrayDefinition based off of a code scanner
(Zend\Code\Scanner\DirectoryScanner or Zend\Code\Scanner\FileScanner).

The following is an example of producing a definition via a DirectoryScanner:

	1
2
3
4
5

	$compiler = new Zend\Di\Definition\Compiler();
$compiler->addCodeScannerDirectory(
 new Zend\Code\Scanner\ScannerDirectory('path/to/library/My/')
);
$definition = $compiler->compile();

This definition can then be directly used by the Di (assuming the above A, B, C scenario
was actually a file per class on disk):

	1
2
3
4
5

	$di = new Zend\Di\Di;
$di->setDefinition($definition);
$di->getInstanceManager()->setProperty('My\A', 'username', 'foo');
$di->getInstanceManager()->setProperty('My\A', 'password', 'bar');
$c = $di->get('My\C');

One strategy for persisting these compiled definitions would be the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	if (!file_exists(__DIR__ . '/di-definition.php') && $isProduction) {
 $compiler = new Zend\Di\Definition\Compiler();
 $compiler->addCodeScannerDirectory(
 new Zend\Code\Scanner\ScannerDirectory('path/to/library/My/')
);
 $definition = $compiler->compile();
 file_put_contents(
 __DIR__ . '/di-definition.php',
 '<?php return ' . var_export($definition->toArray(), true) . ';'
);
} else {
 $definition = new Zend\Di\Definition\ArrayDefinition(
 include __DIR__ . '/di-definition.php'
);
}

// $definition can now be used; in a production system it will be written
// to disk.

Since Zend\Code\Scanner does not include files, the classes contained within are not loaded into memory.
Instead, Zend\Code\Scanner uses tokenization to determine the structure of your files. This makes this suitable
to use this solution during development and within the same request as any one of your application’s dispatched
actions.

Creating a precompiled definition for others to use

If you are a 3rd party code developer, it makes sense to produce a Definition file that describes your code so
that others can utilize this Definition without having to Reflect it via the RuntimeDefinition, or
create it via the Compiler. To do this, use the same technique as above. Instead of writing the resulting array
to disk, you would write the information into a definition directly, by way of Zend\Code\Generator:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	// First, compile the information
$compiler = new Zend\Di\Definition\CompilerDefinition();
$compiler->addDirectoryScanner(
 new Zend\Code\Scanner\DirectoryScanner(__DIR__ . '/My/')
);
$compiler->compile();
$definition = $compiler->toArrayDefinition();

// Now, create a Definition class for this information
$codeGenerator = new Zend\Code\Generator\FileGenerator();
$codeGenerator->setClass(($class = new Zend\Code\Generator\ClassGenerator()));
$class->setNamespaceName('My');
$class->setName('DiDefinition');
$class->setExtendedClass('\Zend\Di\Definition\ArrayDefinition');
$class->addMethod(
 '__construct',
 array(),
 \Zend\Code\Generator\MethodGenerator::FLAG_PUBLIC,
 'parent::__construct(' . var_export($definition->toArray(), true) . ');'
);
file_put_contents(__DIR__ . '/My/DiDefinition.php', $codeGenerator->generate());

Using Multiple Definitions From Multiple Sources

In all actuality, you will be using code from multiple places, some Zend Framework code, some other 3rd party code,
and of course, your own code that makes up your application. Here is a method for consuming definitions from
multiple places:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

	use Zend\Di\Di;
use Zend\Di\Definition;
use Zend\Di\Definition\Builder;

$di = new Di;
$diDefAggregate = new Definition\Aggregate();

// first add in provided Definitions, for example
$diDefAggregate->addDefinition(new ThirdParty\Dbal\DiDefinition());
$diDefAggregate->addDefinition(new Zend\Controller\DiDefinition());

// for code that does not have TypeHints
$builder = new Definition\BuilderDefinition();
$builder->addClass(($class = Builder\PhpClass));
$class->addInjectionMethod(
 ($injectMethod = new Builder\InjectionMethod())
);
$injectMethod->setName('injectImplementation');
$injectMethod->addParameter(
'implementation', 'Class\For\Specific\Implementation'
);

// now, your application code
$compiler = new Definition\Compiler()
$compiler->addCodeScannerDirectory(
 new Zend\Code\Scanner\DirectoryScanner(__DIR__ . '/App/')
);
$appDefinition = $compiler->compile();
$diDefAggregate->addDefinition($appDefinition);

// now, pass in properties
$im = $di->getInstanceManager();

// this could come from Zend\Config\Config::toArray
$propertiesFromConfig = array(
 'ThirdParty\Dbal\DbAdapter' => array(
 'username' => 'someUsername',
 'password' => 'somePassword'
),
 'Zend\Controller\Helper\ContentType' => array(
 'default' => 'xhtml5'
),
);
$im->setProperties($propertiesFromConfig);

Generating Service Locators

In production, you want things to be as fast as possible. The Dependency Injection Container, while engineered for
speed, still must do a fair bit of work resolving parameters and dependencies at runtime. What if you could speed
things up and remove those lookups?

The Zend\Di\ServiceLocator\Generator component can do just that. It takes a configured DI instance, and
generates a service locator class for you from it. That class will manage instances for you, as well as provide
hard-coded, lazy-loading instantiation of instances.

The method getCodeGenerator() returns an instance of Zend\CodeGenerator\Php\PhpFile, from which you can
then write a class file with the new Service Locator. Methods on the Generator class allow you to specify the
namespace and class for the generated Service Locator.

As an example, consider the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	use Zend\Di\ServiceLocator\Generator;

// $di is a fully configured DI instance
$generator = new Generator($di);

$generator->setNamespace('Application')
 ->setContainerClass('Context');
$file = $generator->getCodeGenerator();
$file->setFilename(__DIR__ . '/../Application/Context.php');
$file->write();

The above code will write to ../Application/Context.php, and that file will contain the class
Application\Context. That file might look like the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	<?php

namespace Application;

use Zend\Di\ServiceLocator;

class Context extends ServiceLocator
{

 public function get($name, array $params = array())
 {
 switch ($name) {
 case 'composed':
 case 'My\ComposedClass':
 return $this->getMyComposedClass();

 case 'struct':
 case 'My\Struct':
 return $this->getMyStruct();

 default:
 return parent::get($name, $params);
 }
 }

 public function getComposedClass()
 {
 if (isset($this->services['My\ComposedClass'])) {
 return $this->services['My\ComposedClass'];
 }

 $object = new \My\ComposedClass();
 $this->services['My\ComposedClass'] = $object;
 return $object;
 }
 public function getMyStruct()
 {
 if (isset($this->services['My\Struct'])) {
 return $this->services['My\Struct'];
 }

 $object = new \My\Struct();
 $this->services['My\Struct'] = $object;
 return $object;
 }

 public function getComposed()
 {
 return $this->get('My\ComposedClass');
 }

 public function getStruct()
 {
 return $this->get('My\Struct');
 }
}

To use this class, you simply consume it as you would a DI container:

	1
2
3

	$container = new Application\Context;

$struct = $container->get('struct'); // My\Struct instance

One note about this functionality in its current incarnation. Configuration is per-environment only at this time.
This means that you will need to generate a container per execution environment. Our recommendation is that you do
so, and then in your environment, specify the container class to use.

 [image: Edit this document]

 Unit Testing a Zend Framework 2 application

Unit Testing a Zend Framework 2 application

A solid unit test suite is essential for ongoing development in large
projects, especially those with many people involved. Going back and
manually testing every individual component of an application after
every change is impractical. Your unit tests will help alleviate that
by automatically testing your application’s components and alerting
you when something is not working the same way it was when you wrote
your tests.

This tutorial is written in the hopes of showing how to test different
parts of a Zend Framework 2 MVC application. As such, this tutorial
will use the application written in the getting started
user guide. It is in no way a guide to
unit testing in general, but is here only to help overcome the
initial hurdles in writing unit tests for ZF2 applications.

It is recommended to have at least a basic understanding of unit
tests, assertions and mocks.

As the Zend Framework 2 API uses PHPUnit [http://phpunit.de/], so
will this tutorial. This tutorial assumes that you already have PHPUnit
installed. The version of PHPUnit used should be 3.7.*

Setting up the tests directory

As Zend Framework 2 applications are built from modules that should be
standalone blocks of an application, we don’t test the application in
it’s entirety, but module by module.

We will show how to set up the minimum requirements to test a module,
the Album module we wrote in the user guide, and which then can be
used as a base for testing any other module.

Start by creating a directory called test in zf2-tutorial\module\Album with
the following subdirectories:

zf2-tutorial/
 /module
 /Album
 /test
 /AlbumTest
 /Controller

The structure of the test directory matches exactly with that of the
module’s source files, and it will allow you to keep your tests
well-organized and easy to find.

Bootstrapping your tests

Next, create a file called phpunit.xml under zf2-tutorial/module/Album/test:

<?xml version="1.0" encoding="UTF-8"?>

<phpunit bootstrap="Bootstrap.php" colors="true">
 <testsuites>
 <testsuite name="zf2tutorial">
 <directory>./AlbumTest</directory>
 </testsuite>
 </testsuites>
</phpunit>

And a file called Bootstrap.php, also under zf2-tutorial/module/Album/test:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112

	<?php

namespace AlbumTest;

use Zend\Loader\AutoloaderFactory;
use Zend\Mvc\Service\ServiceManagerConfig;
use Zend\ServiceManager\ServiceManager;
use RuntimeException;

error_reporting(E_ALL | E_STRICT);
chdir(__DIR__);

/**
 * Test bootstrap, for setting up autoloading
 */
class Bootstrap
{
 protected static $serviceManager;

 public static function init()
 {
 $zf2ModulePaths = array(dirname(dirname(__DIR__)));
 if (($path = static::findParentPath('vendor'))) {
 $zf2ModulePaths[] = $path;
 }
 if (($path = static::findParentPath('module')) !== $zf2ModulePaths[0]) {
 $zf2ModulePaths[] = $path;
 }

 static::initAutoloader();

 // use ModuleManager to load this module and it's dependencies
 $config = array(
 'module_listener_options' => array(
 'module_paths' => $zf2ModulePaths,
),
 'modules' => array(
 'Album'
)
);

 $serviceManager = new ServiceManager(new ServiceManagerConfig());
 $serviceManager->setService('ApplicationConfig', $config);
 $serviceManager->get('ModuleManager')->loadModules();
 static::$serviceManager = $serviceManager;
 }

 public static function chroot()
 {
 $rootPath = dirname(static::findParentPath('module'));
 chdir($rootPath);
 }

 public static function getServiceManager()
 {
 return static::$serviceManager;
 }

 protected static function initAutoloader()
 {
 $vendorPath = static::findParentPath('vendor');

 $zf2Path = getenv('ZF2_PATH');
 if (!$zf2Path) {
 if (defined('ZF2_PATH')) {
 $zf2Path = ZF2_PATH;
 } elseif (is_dir($vendorPath . '/ZF2/library')) {
 $zf2Path = $vendorPath . '/ZF2/library';
 } elseif (is_dir($vendorPath . '/zendframework/zendframework/library')) {
 $zf2Path = $vendorPath . '/zendframework/zendframework/library';
 }
 }

 if (!$zf2Path) {
 throw new RuntimeException(
 'Unable to load ZF2. Run `php composer.phar install` or'
 . ' define a ZF2_PATH environment variable.'
);
 }

 if (file_exists($vendorPath . '/autoload.php')) {
 include $vendorPath . '/autoload.php';
 }

 include $zf2Path . '/Zend/Loader/AutoloaderFactory.php';
 AutoloaderFactory::factory(array(
 'Zend\Loader\StandardAutoloader' => array(
 'autoregister_zf' => true,
 'namespaces' => array(
 __NAMESPACE__ => __DIR__ . '/' . __NAMESPACE__,
),
),
));
 }

 protected static function findParentPath($path)
 {
 $dir = __DIR__;
 $previousDir = '.';
 while (!is_dir($dir . '/' . $path)) {
 $dir = dirname($dir);
 if ($previousDir === $dir) {
 return false;
 }
 $previousDir = $dir;
 }
 return $dir . '/' . $path;
 }
}

Bootstrap::init();
Bootstrap::chroot();

The contents of this bootstrap file can be daunting at first sight, but all it
really does is ensuring that all the necessary files are autoloadable for our
tests. The most important lines is line 38 on which we say what
modules we want to load for our test. In this case we are only loading the
Album module as it has no dependencies against other modules.

Now, if you navigate to the zf2-tutorial/module/Album/test/ directory,
and run phpunit, you should get a similar output to this:

PHPUnit 3.7.13 by Sebastian Bergmann.

Configuration read from /var/www/zf2-tutorial/module/Album/test/phpunit.xml

Time: 0 seconds, Memory: 1.75Mb

No tests executed!

Even though no tests were executed, we at least know that the autoloader found the
ZF2 files, otherwise it would throw a RuntimeException, defined on line 69 of
our bootstrap file.

Your first controller test

Testing controllers is never an easy task, but Zend Framework 2 comes
with the Zend\Test component which should make testing much less
cumbersome.

First, create IndexControllerTest.php under
zf2-tutorial/module/Album/test/AlbumTest/Controller with
the following contents:

<?php

namespace AlbumTest\Controller;

use Zend\Test\PHPUnit\Controller\AbstractHttpControllerTestCase;

class AlbumControllerTest extends AbstractHttpControllerTestCase
{
 public function setUp()
 {
 $this->setApplicationConfig(
 include '/var/www/zf2-tutorial/config/application.config.php'
);
 parent::setUp();
 }
}

The AbstractHttpControllerTestCase class we extend here helps us setting up the
application itself, helps with dispatching and other tasks that happen during a request,
as well offers methods for asserting request params, response headers, redirects and more.
See Zend\Test documentation for more.

One thing that is needed is to set the application config with the setApplicationConfig
method.

Now, add the following function to the AlbumControllerTest class:

public function testIndexActionCanBeAccessed()
{
 $this->dispatch('/album');
 $this->assertResponseStatusCode(200);

 $this->assertModuleName('Album');
 $this->assertControllerName('Album\Controller\Album');
 $this->assertControllerClass('AlbumController');
 $this->assertMatchedRouteName('album');
}

This test case dispatches the /album URL, asserts that the response code is 200,
and that we ended up in the desired module and controller.

Note

For asserting the controller name we are using the controller name we defined in our
routing configuration for the Album module. In our example this should be defined on line
19 of the module.config.php file in the Album module.

A failing test case

Finally, cd to zf2-tutorial/module/Album/test/ and run phpunit. Uh-oh! The test
failed!

PHPUnit 3.7.13 by Sebastian Bergmann.

Configuration read from /var/www/zf2-tutorial/module/Album/test/phpunit.xml

F

Time: 0 seconds, Memory: 8.50Mb

There was 1 failure:

1) AlbumTest\Controller\AlbumControllerTest::testIndexActionCanBeAccessed
Failed asserting response code "200", actual status code is "500"

/var/www/zf2-tutorial/vendor/ZF2/library/Zend/Test/PHPUnit/Controller/AbstractControllerTestCase.php:373
/var/www/zf2-tutorial/module/Album/test/AlbumTest/Controller/AlbumControllerTest.php:22

FAILURES!
Tests: 1, Assertions: 0, Failures: 1.

The failure message doesn’t tell us much, apart from that the expected status code
is not 200, but 500. To get a bit more information when something goes wrong in a
test case, we set the protected $traceError member to true. Add the following
just above the setUp method in our AlbumControllerTest class:

protected $traceError = true;

Running the phpunit command again and we should see some more information about
what went wrong in our test. The main error message we are interested in should read
something like:

Zend\ServiceManager\Exception\ServiceNotFoundException: Zend\ServiceManager\ServiceManager::get
was unable to fetch or create an instance for Zend\Db\Adapter\Adapter

From this error message it is clear that not all our dependencies are available in the
service manager. Let us take a look how can we fix this.

Configuring the service manager for the tests

The error says that the service manager can not create an instance of a database adapter
for us. The database adapter is indirectly used by our Album\Model\AlbumTable to
fetch the list of albums from the database.

The first thought would be to create an instance of an adapter, pass it to the
service manager and let the code run from there as is. The problem with this approach
is that we would end up with our test cases actually doing queries against the database.
To keep our tests fast, and to reduce the number of possible failure points in our tests,
this should be avoided.

The second thought would be then to create a mock of the database adapter, and prevent
the actual database calls by mocking them out. This is a much better approach, but creating
the adapter mock is tedious (but no doubt we will have to create it at one point).

The best thing to do would be to mock out our Album\Model\AlbumTable class which
retrieves the list of albums from the database. Remember, we are now testing our controller,
so we can mock out the actual call to fetchAll and replace the return values with
dummy values. At this point, we are not interested in how fetchAll retrieves the
albums, but only that it gets called and that it returns an array of albums, so that is
why we can get away with this mocking. When we will test AlbumTable itself,
then we will write the actual tests for the fetchAll method.

Here is how we can accomplish this, by modifying the testIndexActionCanBeAccessed
test method as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	public function testIndexActionCanBeAccessed()
{
 $albumTableMock = $this->getMockBuilder('Album\Model\AlbumTable')
 ->disableOriginalConstructor()
 ->getMock();

 $albumTableMock->expects($this->once())
 ->method('fetchAll')
 ->will($this->returnValue(array()));

 $serviceManager = $this->getApplicationServiceLocator();
 $serviceManager->setAllowOverride(true);
 $serviceManager->setService('Album\Model\AlbumTable', $albumTableMock);

 $this->dispatch('/album');
 $this->assertResponseStatusCode(200);

 $this->assertModuleName('Album');
 $this->assertControllerName('Album\Controller\Album');
 $this->assertControllerClass('AlbumController');
 $this->assertMatchedRouteName('album');
}

By default, the Service Manager does not allow us to replace existing services. As the
Album\Model\AlbumTable was already set, we are allowing for overrides (line 12), and then
replacing the real instance of the AlbumTable with a mock. The mock is created so that it
will return just an empty array when the fetchAll method is called. This allows us to
test for what we care about in this test, and that is that by dispatching to the /album
URL we get to the Album module’s AlbumController.

Running the phpunit command at this point, we will get the following output as the
tests now pass:

PHPUnit 3.7.13 by Sebastian Bergmann.

Configuration read from /var/www/zf2-tutorial/module/Album/test/phpunit.xml

.

Time: 0 seconds, Memory: 9.00Mb

OK (1 test, 6 assertions)

Testing actions with POST

One of the most common actions happening in controllers is submitting a form
with some POST data. Testing this is surprisingly easy:

public function testAddActionRedirectsAfterValidPost()
{
 $albumTableMock = $this->getMockBuilder('Album\Model\AlbumTable')
 ->disableOriginalConstructor()
 ->getMock();

 $albumTableMock->expects($this->once())
 ->method('saveAlbum')
 ->will($this->returnValue(null));

 $serviceManager = $this->getApplicationServiceLocator();
 $serviceManager->setAllowOverride(true);
 $serviceManager->setService('Album\Model\AlbumTable', $albumTableMock);

 $postData = array(
 'title' => 'Led Zeppelin III',
 'artist' => 'Led Zeppelin',
);
 $this->dispatch('/album/add', 'POST', $postData);
 $this->assertResponseStatusCode(302);

 $this->assertRedirectTo('/album');
}

Here we test that when we make a POST request against the /album/add URL, the
Album\Model\AlbumTable‘s saveAlbum will be called and after that we will
be redirected back to the /album URL.

Running phpunit gives us the following output:

PHPUnit 3.7.13 by Sebastian Bergmann.

Configuration read from /home/robert/www/zf2-tutorial/module/Album/test/phpunit.xml

..

Time: 0 seconds, Memory: 10.75Mb

OK (2 tests, 9 assertions)

Testing the editAction and deleteAction methods can be easily done in a manner similar
as shown for the addAction.

Testing model entities

Now that we know how to test our controllers, let us move to an other important part of our
application - the model entity.

Here we want to test that the initial state of the entity is what we expect it to be,
that we can convert the model’s parameters to and from an array, and that it has all
the input filters we need.

Create the file AlbumTest.php in module/Album/test/AlbumTest/Model directory
with the following contents:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111

	<?php
namespace AlbumTest\Model;

use Album\Model\Album;
use PHPUnit_Framework_TestCase;

class AlbumTest extends PHPUnit_Framework_TestCase
{
 public function testAlbumInitialState()
 {
 $album = new Album();

 $this->assertNull(
 $album->artist,
 '"artist" should initially be null'
);
 $this->assertNull(
 $album->id,
 '"id" should initially be null'
);
 $this->assertNull(
 $album->title,
 '"title" should initially be null'
);
 }

 public function testExchangeArraySetsPropertiesCorrectly()
 {
 $album = new Album();
 $data = array('artist' => 'some artist',
 'id' => 123,
 'title' => 'some title');

 $album->exchangeArray($data);

 $this->assertSame(
 $data['artist'],
 $album->artist,
 '"artist" was not set correctly'
);
 $this->assertSame(
 $data['id'],
 $album->id,
 '"id" was not set correctly'
);
 $this->assertSame(
 $data['title'],
 $album->title,
 '"title" was not set correctly'
);
 }

 public function testExchangeArraySetsPropertiesToNullIfKeysAreNotPresent()
 {
 $album = new Album();

 $album->exchangeArray(array('artist' => 'some artist',
 'id' => 123,
 'title' => 'some title'));
 $album->exchangeArray(array());

 $this->assertNull(
 $album->artist, '"artist" should have defaulted to null'
);
 $this->assertNull(
 $album->id, '"id" should have defaulted to null'
);
 $this->assertNull(
 $album->title, '"title" should have defaulted to null'
);
 }

 public function testGetArrayCopyReturnsAnArrayWithPropertyValues()
 {
 $album = new Album();
 $data = array('artist' => 'some artist',
 'id' => 123,
 'title' => 'some title');

 $album->exchangeArray($data);
 $copyArray = $album->getArrayCopy();

 $this->assertSame(
 $data['artist'],
 $copyArray['artist'],
 '"artist" was not set correctly'
);
 $this->assertSame(
 $data['id'],
 $copyArray['id'],
 '"id" was not set correctly'
);
 $this->assertSame(
 $data['title'],
 $copyArray['title'],
 '"title" was not set correctly'
);
 }

 public function testInputFiltersAreSetCorrectly()
 {
 $album = new Album();

 $inputFilter = $album->getInputFilter();

 $this->assertSame(3, $inputFilter->count());
 $this->assertTrue($inputFilter->has('artist'));
 $this->assertTrue($inputFilter->has('id'));
 $this->assertTrue($inputFilter->has('title'));
 }
}

We are testing for 5 things:

	Are all of the Album’s properties initially set to NULL?

	Will the Album’s properties be set correctly when we call exchangeArray()?

	Will a default value of NULL be used for properties whose keys are not present in the $data array?

	Can we get an array copy of our model?

	Do all elements have input filters present?

If we run phpunit again, we will get the following output, confirming that our model is
indeed correct:

PHPUnit 3.7.13 by Sebastian Bergmann.

Configuration read from /var/www/zf2-tutorial/module/Album/test/phpunit.xml

.......

Time: 0 seconds, Memory: 11.00Mb

OK (7 tests, 25 assertions)

Testing model tables

The final step in this unit testing tutorial for Zend Framework 2 applications
is writing tests for our model tables.

This test assures that we can get a list of albums, or one album by it’s ID,
and that we can save and delete albums from the database.

To avoid actual interaction with the database itself, we will replace certain
parts with mocks.

Create a file AlbumTableTest.php in module/Album/test/AlbumTest/Model
with the following contents:

<?php
namespace AlbumTest\Model;

use Album\Model\AlbumTable;
use Album\Model\Album;
use Zend\Db\ResultSet\ResultSet;
use PHPUnit_Framework_TestCase;

class AlbumTableTest extends PHPUnit_Framework_TestCase
{
 public function testFetchAllReturnsAllAlbums()
 {
 $resultSet = new ResultSet();
 $mockTableGateway = $this->getMock(
 'Zend\Db\TableGateway\TableGateway',
 array('select'),
 array(),
 '',
 false
);
 $mockTableGateway->expects($this->once())
 ->method('select')
 ->with()
 ->will($this->returnValue($resultSet));

 $albumTable = new AlbumTable($mockTableGateway);

 $this->assertSame($resultSet, $albumTable->fetchAll());
 }
}

Since we are testing the AlbumTable here and not the TableGateway
class (which has already been tested in Zend Framework),
we just want to make sure that our AlbumTable class is interacting with the TableGateway
class the way that we expect it to. Above, we’re testing to see if the fetchAll() method
of AlbumTable will call the select() method of the $tableGateway property with
no parameters. If it does, it should return a ResultSet object. Finally, we expect that
this same ResultSet object will be returned to the calling method. This test should run
fine, so now we can add the rest of the test methods:

public function testCanRetrieveAnAlbumByItsId()
{
 $album = new Album();
 $album->exchangeArray(array('id' => 123,
 'artist' => 'The Military Wives',
 'title' => 'In My Dreams'));

 $resultSet = new ResultSet();
 $resultSet->setArrayObjectPrototype(new Album());
 $resultSet->initialize(array($album));

 $mockTableGateway = $this->getMock(
 'Zend\Db\TableGateway\TableGateway',
 array('select'),
 array(),
 '',
 false
);
 $mockTableGateway->expects($this->once())
 ->method('select')
 ->with(array('id' => 123))
 ->will($this->returnValue($resultSet));

 $albumTable = new AlbumTable($mockTableGateway);

 $this->assertSame($album, $albumTable->getAlbum(123));
}

public function testCanDeleteAnAlbumByItsId()
{
 $mockTableGateway = $this->getMock(
 'Zend\Db\TableGateway\TableGateway',
 array('delete'),
 array(),
 '',
 false
);
 $mockTableGateway->expects($this->once())
 ->method('delete')
 ->with(array('id' => 123));

 $albumTable = new AlbumTable($mockTableGateway);
 $albumTable->deleteAlbum(123);
}

public function testSaveAlbumWillInsertNewAlbumsIfTheyDontAlreadyHaveAnId()
{
 $albumData = array(
 'artist' => 'The Military Wives',
 'title' => 'In My Dreams'
);
 $album = new Album();
 $album->exchangeArray($albumData);

 $mockTableGateway = $this->getMock(
 'Zend\Db\TableGateway\TableGateway',
 array('insert'),
 array(),
 '',
 false
);
 $mockTableGateway->expects($this->once())
 ->method('insert')
 ->with($albumData);

 $albumTable = new AlbumTable($mockTableGateway);
 $albumTable->saveAlbum($album);
}

public function testSaveAlbumWillUpdateExistingAlbumsIfTheyAlreadyHaveAnId()
{
 $albumData = array(
 'id' => 123,
 'artist' => 'The Military Wives',
 'title' => 'In My Dreams',
);
 $album = new Album();
 $album->exchangeArray($albumData);

 $resultSet = new ResultSet();
 $resultSet->setArrayObjectPrototype(new Album());
 $resultSet->initialize(array($album));

 $mockTableGateway = $this->getMock(
 'Zend\Db\TableGateway\TableGateway',
 array('select', 'update'),
 array(),
 '',
 false
);
 $mockTableGateway->expects($this->once())
 ->method('select')
 ->with(array('id' => 123))
 ->will($this->returnValue($resultSet));
 $mockTableGateway->expects($this->once())
 ->method('update')
 ->with(
 array(
 'artist' => 'The Military Wives',
 'title' => 'In My Dreams'
),
 array('id' => 123)
);

 $albumTable = new AlbumTable($mockTableGateway);
 $albumTable->saveAlbum($album);
}

public function testExceptionIsThrownWhenGettingNonExistentAlbum()
{
 $resultSet = new ResultSet();
 $resultSet->setArrayObjectPrototype(new Album());
 $resultSet->initialize(array());

 $mockTableGateway = $this->getMock(
 'Zend\Db\TableGateway\TableGateway',
 array('select'),
 array(),
 '',
 false
);
 $mockTableGateway->expects($this->once())
 ->method('select')
 ->with(array('id' => 123))
 ->will($this->returnValue($resultSet));

 $albumTable = new AlbumTable($mockTableGateway);

 try {
 $albumTable->getAlbum(123);
 }
 catch (\Exception $e) {
 $this->assertSame('Could not find row 123', $e->getMessage());
 return;
 }

 $this->fail('Expected exception was not thrown');
}

These tests are nothing complicated and they should be self explanatory. In each test
we are injecting a mock table gateway into our AlbumTable and set our expectations
accordingly.

We are testing that:

	We can retrieve an individual album by its ID.

	We can delete albums.

	We can save new album.

	We can update existing albums.

	We will encounter an exception if we’re trying to retrieve an album that doesn’t exist.

Running phpunit command for one last time, we get the output as follows:

PHPUnit 3.7.13 by Sebastian Bergmann.

Configuration read from /var/www/zf2-tutorial/module/Album/test/phpunit.xml

.............

Time: 0 seconds, Memory: 11.50Mb

OK (13 tests, 34 assertions)

Conclusion

In this short tutorial we gave a few examples how different parts of a Zend
Framework 2 MVC application can be tested. We covered setting up the environment
for testing, how to test controllers and actions,
how to approach failing test cases, how to configure
the service manager,
as well as how to test model entities
and model tables.

This tutorial is by no means a definitive guide to writing unit tests, just
a small stepping stone helping you develop applications of higher quality.

 [image: Edit this document]

 Using the EventManager

Using the EventManager

This tutorial explores the various features of Zend\EventManager.

Terminology

	An Event is a named action.

	A Listener is any PHP callback that reacts to an event.

	An EventManager aggregates listeners for one or more named events, and
triggers events.

Typically, an event will be modeled as an object, containing metadata
surrounding when and how it was triggered, including the event name, what object
triggered the event (the “target”), and what parameters were provided. Events
are named, which allows a single listener to branch logic based on the
event.

Getting started

The minimal things necessary to start using events are:

	An EventManager instance

	One or more listeners on one or more events

	A call to trigger() an event

The simplest example looks something like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	use Zend\EventManager\EventManager;

$events = new EventManager();
$events->attach('do', function ($e) {
 $event = $e->getName();
 $params = $e->getParams();
 printf(
 'Handled event "%s", with parameters %s',
 $event,
 json_encode($params)
);
});

$params = array('foo' => 'bar', 'baz' => 'bat');
$events->trigger('do', null, $params);

The above will result in the following:

Handled event "do", with parameters {"foo":"bar","baz":"bat"}

Note

Throughout this tutorial, we use closures as listeners. However, any valid
PHP callback can be attached as a listeners: PHP function names, static
class methods, object instance methods, functors, or closures. We use
closures within this post simply for illustration and simplicity.

If you were paying attention to the example, you will have noted the null
argument. Why is it there?

Typically, you will compose an EventManager within a class, to allow
triggering actions within methods. The middle argument to trigger() is the
“target”, and in the case described, would be the current object instance. This
gives event listeners access to the calling object, which can often be useful.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

	use Zend\EventManager\EventManager;
use Zend\EventManager\EventManagerAwareInterface;
use Zend\EventManager\EventManagerInterface;

class Example implements EventManagerAwareInterface
{
 protected $events;

 public function setEventManager(EventManagerInterface $events)
 {
 $events->setIdentifiers(array(
 __CLASS__,
 get_class($this)
));
 $this->events = $events;
 }

 public function getEventManager()
 {
 if (!$this->events) {
 $this->setEventManager(new EventManager());
 }
 return $this->events;
 }

 public function do($foo, $baz)
 {
 $params = compact('foo', 'baz');
 $this->getEventManager()->trigger(__FUNCTION__, $this, $params);
 }

}

$example = new Example();

$example->getEventManager()->attach('do', function($e) {
 $event = $e->getName();
 $target = get_class($e->getTarget()); // "Example"
 $params = $e->getParams();
 printf(
 'Handled event "%s" on target "%s", with parameters %s',
 $event,
 $target,
 json_encode($params)
);
});

$example->do('bar', 'bat');

The above is basically the same as the first example. The main difference is
that we’re now using that middle argument in order to pass the target, the
instance of Example, on to the listeners. Our listener is now retrieving
that ($e->getTarget()), and doing something with it.

If you’re reading this critically, you should have a new question: What is the
call to setIdentifiers() for?

Shared managers

One aspect that the EventManager implementation provides is an ability to
compose a SharedEventManagerInterface implementation.

Zend\EventManager\SharedEventManagerInterface describes an object that
aggregates listeners for events attached to objects with specific identifiers.
It does not trigger events itself. Instead, an EventManager instance that
composes a SharedEventManager will query the SharedEventManager for
listeners on identifiers it’s interested in, and trigger those listeners as
well.

How does this work, exactly?

Consider the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	use Zend\EventManager\SharedEventManager;

$sharedEvents = new SharedEventManager();
$sharedEvents->attach('Example', 'do', function ($e) {
 $event = $e->getName();
 $target = get_class($e->getTarget()); // "Example"
 $params = $e->getParams();
 printf(
 'Handled event "%s" on target "%s", with parameters %s',
 $event,
 $target,
 json_encode($params)
);
});

This looks almost identical to the previous example; the key difference is that
there is an additional argument at the start of the list, 'Example'. This
code is basically saying, “Listen to the ‘do’ event of the ‘Example’ target,
and, when notified, execute this callback.”

This is where the setIdentifiers() argument of EventManager comes into
play. The method allows passing a string, or an array of strings, defining the
name or names of the context or targets the given instance will be interested
in. If an array is given, then any listener on any of the targets given will be
notified.

So, getting back to our example, let’s assume that the above shared listener is
registered, and also that the Example class is defined as above. We can then
execute the following:

	1
2
3

	$example = new Example();
$example->getEventManager()->setSharedManager($sharedEvents);
$example->do('bar', 'bat');

and expect the following to be echo‘d:

Handled event "do" on target "Example", with parameters {"foo":"bar","baz":"bat"}

Now, let’s say we extended Example as follows:

	1
2
3

	class SubExample extends Example
{
}

One interesting aspect of our setEventManager() method is that we defined it
to listen both on __CLASS__ and get_class($this). This means that
calling do() on our SubExample class would also trigger the shared
listener! It also means that, if desired, we could attach to specifically
SubExample, and listeners attached to only the Example target would not
be triggered.

Finally, the names used as contexts or targets need not be class names; they can
be some name that only has meaning in your application if desired. As an
example, you could have a set of classes that respond to “log” or “cache” – and
listeners on these would be notified by any of them.

Note

We recommend using class names, interface names, and/or abstract class names
for identifiers. This makes determining what events are available easier, as
well as finding which listeners might be attaching to those events.
Interfaces make a particularly good use case, as they allow attaching to a
group of related classes a single operation.

At any point, if you do not want to notify shared listeners, pass a null
value to setSharedManager():

$events->setSharedManager(null);

and they will be ignored. If at any point, you want to enable them again, pass
the SharedEventManager instance:

$events->setSharedManager($sharedEvents);

Wildcards

So far, with both a normal EventManager instance and with the
SharedEventManager instance, we’ve seen the usage of singular strings
representing the event and target names to which we want to attach. What if you
want to attach a listener to multiple events or targets?

The answer is to supply an array of events or targets, or a wildcard, *.

Consider the following examples:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

	// Multiple named events:
$events->attach(
 array('foo', 'bar', 'baz'), // events
 $listener
);

// All events via wildcard:
$events->attach(
 '*', // all events
 $listener
);

// Multiple named targets:
$sharedEvents->attach(
 array('Foo', 'Bar', 'Baz'), // targets
 'doSomething', // named event
 $listener
);

// All targets via wildcard
$sharedEvents->attach(
 '*', // all targets
 'doSomething', // named event
 $listener
);

// Mix and match: multiple named events on multiple named targets:
$sharedEvents->attach(
 array('Foo', 'Bar', 'Baz'), // targets
 array('foo', 'bar', 'baz'), // events
 $listener
);

// Mix and match: all events on multiple named targets:
$sharedEvents->attach(
 array('Foo', 'Bar', 'Baz'), // targets
 '*', // events
 $listener
);

// Mix and match: multiple named events on all targets:
$sharedEvents->attach(
 '*', // targets
 array('foo', 'bar', 'baz'), // events
 $listener
);

// Mix and match: all events on all targets:
$sharedEvents->attach(
 '*', // targets
 '*', // events
 $listener
);

The ability to specify multiple targets and/or events when attaching can slim
down your code immensely.

Listener aggregates

Another approach to listening to multiple events is via a concept of listener
aggregates, represented by Zend\EventManager\ListenerAggregateInterface.
Via this approach, a single class can listen to multiple events, attaching
one or more instance methods as listeners.

This interface defines two methods, attach(EventManagerInterface $events)
and detach(EventManagerInterface $events). Basically, you pass an
EventManager instance to one and/or the other, and then it’s up to the
implementing class to determine what to do.

As an example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	use Zend\EventManager\EventInterface;
use Zend\EventManager\EventManagerInterface;
use Zend\EventManager\ListenerAggregateInterface;
use Zend\Log\Logger;

class LogEvents implements ListenerAggregateInterface
{
 protected $listeners = array();
 protected $log;

 public function __construct(Logger $log)
 {
 $this->log = $log;
 }

 public function attach(EventManagerInterface $events)
 {
 $this->listeners[] = $events->attach('do', array($this, 'log'));
 $this->listeners[] = $events->attach('doSomethingElse', array($this, 'log'));
 }

 public function detach(EventCollection $events)
 {
 foreach ($this->listeners as $index => $listener) {
 if ($events->detach($listener)) {
 unset($this->listeners[$index];
 }
 }
 }

 public function log(EventInterface $e)
 {
 $event = $e->getName();
 $params = $e->getParams();
 $this->log->info(sprintf('%s: %s', $event, json_encode($params)));
 }
}

You can attach this using either attach() or attachAggregate():

$logListener = new LogEvents($logger);

$events->attachAggregate($logListener); // OR
$events->attach($logListener);

Any events the aggregate attaches to will then be notified when triggered.

Why bother? For a couple of reasons:

	Aggregates allow you to have stateful listeners. The above example
demonstrates this via the composition of the logger; another example would be
tracking configuration options.

	Aggregates make detaching listeners easier. When you call attach()
normally, you receive a Zend\Stdlib\CallbackHandler instance; the only way
to detach() a listener is to pass that instance back – which means if you
want to detach later, you need to keep that instance somewhare. Aggregates
typically do this for you – as you can see in the example above.

Introspecting results

Sometimes you’ll want to know what your listeners returned. One thing to
remember is that you may have multiple listeners on the same event; the
interface for results must be consistent regardless of the number of listeners.

The EventManager implementation by default returns a
Zend\EventManager\ResponseCollection instance. This class extends PHP’s
SplStack, allowing you to loop through responses in reverse order (since the
last one executed is likely the one you’re most interested in). It also
implements the following methods:

	first() will retrieve the first result received

	last() will retrieve the last result received

	contains($value) allows you to test all values to see if a given one was
received, and returns simply a boolean true if found, and false if not.

Typically, you should not worry about the return values from events, as the
object triggering the event shouldn’t really have much insight into what
listeners are attached. However, sometimes you may want to short-circuit
execution if interesting results are obtained.

Short-ciruiting listener execution

You may want to short-ciruit execution if a particular result is obtained, or if
a listener determines that something is wrong, or that it can return something
quicker than the target.

As examples, one rationale for adding an EventManager is as a caching mechanism.
You can trigger one event early in the method, returning if a cache is found,
and trigger another event late in the method, seeding the cache.

The EventManager component offers two ways to handle this. The first is to
pass a callback as the last argument to trigger(); if that callback returns
a boolean true, execution is halted.

Here’s an example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17

	public function someExpensiveCall($criteria1, $criteria2)
{
 $params = compact('criteria1', 'criteria2');
 $results = $this->getEventManager()->trigger(
 __FUNCTION__,
 $this,
 $params,
 function ($r) {
 return ($r instanceof SomeResultClass);
 }
);
 if ($results->stopped()) {
 return $results->last();
 }

 // ... do some work ...
}

With this paradigm, we know that the likely reason of execution halting is due
to the last result meeting the test callback criteria; as such, we simply return
that last result.

The other way to halt execution is within a listener, acting on the Event
object it receives. In this case, the listener calls stopPropagation(true),
and the EventManager will then return without notifying any additional
listeners.

	1
2
3
4

	$events->attach('do', function ($e) {
 $e->stopPropagation();
 return new SomeResultClass();
});

This, of course, raises some ambiguity when using the trigger paradigm, as you
can no longer be certain that the last result meets the criteria it’s searching
on. As such, we recommend that you standardize on one approach or the other.

Keeping it in order

On occasion, you may be concerned about the order in which listeners execute. As
an example, you may want to do any logging early, to ensure that if
short-circuiting occurs, you’ve logged; or if implementing a cache, you may want
to return early if a cache hit is found, and execute late when saving to a
cache.

Each of EventManager::attach() and SharedEentManager::attach() accept
one additional argument, a priority. By default, if this is omitted, listeners
get a priority of 1, and are executed in the order in which they are attached.
However, if you provide a priority value, you can influence order of execution.

	Higher priority values execute earlier.

	Lower (negative) priority values execute later.

To borrow an example from earlier:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12

	$priority = 100;
$events->attach('Example', 'do', function($e) {
 $event = $e->getName();
 $target = get_class($e->getTarget()); // "Example"
 $params = $e->getParams();
 printf(
 'Handled event "%s" on target "%s", with parameters %s',
 $event,
 $target,
 json_encode($params)
);
}, $priority);

This would execute with high priority, meaning it would execute early. If we
changed $priority to -100, it would execute with low priority, executing
late.

While you can’t necessarily know all the listeners attached, chances are you can
make adequate guesses when necessary in order to set appropriate priority
values. We advise avoiding setting a priority value unless absolutely necessary.

Custom event objects

Hopefully some of you have been wondering, “where and when is the Event object
created”? In all of the examples above, it’s created based on the arguments
passed to trigger() – the event name, target, and parameters. Sometimes,
however, you may want greater control over the object.

As an example, one thing that looks like a code smell is when you have code like
this:

	1
2
3
4

	$routeMatch = $e->getParam('route-match', false);
if (!$routeMatch) {
 // Oh noes! we cannot do our work! whatever shall we do?!?!?!
}

The problems with this are several. First, relying on string keys is going to
very quickly run into problems – typos when setting or retrieving the argument
can lead to hard to debug situations. Second, we now have a documentation issue;
how do we document expected arguments? how do we document what we’re shoving
into the event? Third, as a side effect, we can’t use IDE or editor hinting
support – string keys give these tools nothing to work with.

Similarly, consider how you might represent a computational result of a method
when triggering an event. As an example:

	1
2
3
4
5
6
7
8
9

	// in the method:
$params['__RESULT'] = $computedResult;
$events->trigger(__FUNCTION__ . '.post', $this, $params);

// in the listener:
$result = $e->getParam('__RESULT__');
if (!$result) {
 // Oh noes! we cannot do our work! whatever shall we do?!?!?!
}

Sure, that key may be unique, but it suffers from a lot of the same issues.

So, the solution is to create custom events. As an example, we have a custom
MvcEvent in the ZF2 MVC layer. This event composes the application instance,
the router, the route match object, request and response objects, the view
model, and also a result. We end up with code like this in our listeners:

	1
2
3
4
5
6

	$response = $e->getResponse();
$result = $e->getResult();
if (is_string($result)) {
 $content = $view->render('layout.phtml', array('content' => $result));
 $response->setContent($content);
}

But how do we use this custom event? Simple: trigger() can accept an event
object instead of any of the event name, target, or params arguments.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18

	$event = new CustomEvent();
$event->setSomeKey($value);

// Injected with event name and target:
$events->trigger('foo', $this, $event);

// Injected with event name:
$event->setTarget($this);
$events->trigger('foo', $event);

// Fully encapsulates all necessary properties:
$event->setName('foo');
$event->setTarget($this);
$events->trigger($event);

// Passing a callback following the event object works for
// short-circuiting, too.
$results = $events->trigger('foo', $this, $event, $callback);

This is a really powerful technique for domain-specific event systems, and
definitely worth experimenting with.

Putting it together: Implementing a simple caching system

In previous sections, I indicated that short-circuiting is a way to potentially
implement a caching solution. Let’s create a full example.

First, let’s define a method that could use caching. You’ll note that in most of
the examples, I’ve used __FUNCTION__ as the event name; this is a good practice,
as it makes it simple to create a macro for triggering events, as well as helps
to keep event names unique (as they’re usually within the context of the
triggering class). However, in the case of a caching example, this would lead to
identical events being triggered. As such, I recommend postfixing the event name
with semantic names: “do.pre”, “do.post”, “do.error”, etc. I’ll use that
convention in this example.

Additionally, you’ll notice that the $params I pass to the event is usually the
list of parameters passed to the method. This is because those are often not
stored in the object, and also to ensure the listeners have the exact same
context as the calling method. But it raises an interesting problem in this
example: what name do we give the result of the method? One standard that has
emerged is the use of __RESULT__, as double-underscored variables are
typically reserved for the sytem.

Here’s what the method will look like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	public function someExpensiveCall($criteria1, $criteria2)
{
 $params = compact('criteria1', 'criteria2');
 $results = $this->getEventManager()->trigger(
 __FUNCTION__ . '.pre',
 $this,
 $params,
 function ($r) {
 return ($r instanceof SomeResultClass);
 }
);
 if ($results->stopped()) {
 return $results->last();
 }

 // ... do some work ...

 $params['__RESULT__'] = $calculatedResult;
 $this->events()->trigger(__FUNCTION__ . '.post', $this, $params);
 return $calculatedResult;
}

Now, to provide some caching listeners. We’ll need to attach to each of the
“someExpensiveCall.pre” and “someExpensiveCall.post” methods. In the former
case, if a cache hit is detected, we return it, and move on. In the latter, we
store the value in the cache.

We’ll assume $cache is defined, and follows the paradigms of Zend\Cache. We’ll
want to return early if a hit is detected, and execute late when saving a cache
(in case the result is modified by another listener). As such, we’ll set the
“someExpensiveCall.pre” listener to execute with priority 100, and the
“someExpensiveCall.post” listener to execute with priority -100.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	$events->attach('someExpensiveCall.pre', function($e) use ($cache) {
 $params = $e->getParams();
 $key = md5(json_encode($params));
 $hit = $cache->load($key);
 return $hit;
}, 100);

$events->attach('someExpensiveCall.post', function($e) use ($cache) {
 $params = $e->getParams();
 $result = $params['__RESULT__'];
 unset($params['__RESULT__']);
 $key = md5(json_encode($params));
 $cache->save($result, $key);
}, -100);

Note

The above could have been done within a ListenerAggregate, which would
have allowed keeping the $cache instance as a stateful property, instead
of importing it into closures.

Another approach would be to move the body of the method to a listener as well,
which would allow using the priority system in order to implement caching. That
would look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

	public function setEventManager(EventManagerInterface $events)
{
 $this->events = $events;
 $events->setIdentifiers(array(__CLASS__, get_class($this)));
 $events->attach('someExpensiveCall', array($this, 'doSomeExpensiveCall'));
}

public function someExpensiveCall($criteria1, $criteria2)
{
 $params = compact('criteria1', 'criteria2');
 $results = $this->getEventManager()->trigger(
 __FUNCTION__,
 $this,
 $params,
 function ($r) {
 return ($r instanceof SomeResultClass);
 }
);
 return $results->last();
}

public function doSomeExpensiveCall($e)
{
 // ... do some work ...
 $e->setParam('__RESULT__', $calculatedResult);
 return $calculatedResult;
}

The listeners would then attach to the “someExpensiveCall” event, with the cache
lookup listener listening at high priority, and the cache storage listener
listening at low (negative) priority.

Sure, we could probably simply add caching to the object itself - but this
approach allows the same handlers to be attached to multiple events, or to
attach multiple listeners to the same events (e.g. an argument validator, a
logger and a cache manager). The point is that if you design your object with
events in mind, you can easily make it more flexible and extensible, without
requiring developers to actually extend it – they can simply attach listeners.

Conclusion

The EventManager is a powerful component. It drives the workflow of the MVC
layer, and is used in countless components to provide hook points for developers
to manipulate the workflow. It can be put to any number of uses inside your own
code, and is an important part of your Zend Framework toolbox.

 [image: Edit this document]

 Advanced Configuration Tricks

Advanced Configuration Tricks

Configuration of Zend Framework 2 applications happens in several steps:

	Initial configuration is passed to the Application instance and used to
seed the ModuleManager and ServiceManager. In this tutorial, we will
call this configuration system configuration.

	The ModuleManager‘s ConfigListener aggregates configuration and merges
it while modules are being loaded. In this tutorial, we will call this
configuration application configuration.

	Once configuration is aggregated from all modules, the ConfigListener will
also merge application configuration globbed in specified directories
(typically config/autoload/).

In this tutorial, we’ll look at the exact sequence, and how you can tie into it.

System configuration

To begin module loading, we have to tell the Application instance about the
available modules and where they live, optionally provide some information to
the default module listeners (e.g., where application configuration lives, and
what files to load; whether to cache merged configuration, and where; etc.), and
optionally seed the ServiceManager. For purposes of this tutorial we will
call this the system configuration.

When using the skeleton application, the system configuration is by default
in config/application.config.php. The defaults look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

	<?php
return array(
 // This should be an array of module namespaces used in the application.
 'modules' => array(
 'Application',
),

 // These are various options for the listeners attached to the ModuleManager
 'module_listener_options' => array(
 // This should be an array of paths in which modules reside.
 // If a string key is provided, the listener will consider that a module
 // namespace, the value of that key the specific path to that module's
 // Module class.
 'module_paths' => array(
 './module',
 './vendor',
),

 // An array of paths from which to glob configuration files after
 // modules are loaded. These effectively overide configuration
 // provided by modules themselves. Paths may use GLOB_BRACE notation.
 'config_glob_paths' => array(
 'config/autoload/{,*.}{global,local}.php',
),

 // Whether or not to enable a configuration cache.
 // If enabled, the merged configuration will be cached and used in
 // subsequent requests.
 //'config_cache_enabled' => $booleanValue,

 // The key used to create the configuration cache file name.
 //'config_cache_key' => $stringKey,

 // Whether or not to enable a module class map cache.
 // If enabled, creates a module class map cache which will be used
 // by in future requests, to reduce the autoloading process.
 //'module_map_cache_enabled' => $booleanValue,

 // The key used to create the class map cache file name.
 //'module_map_cache_key' => $stringKey,

 // The path in which to cache merged configuration.
 //'cache_dir' => $stringPath,

 // Whether or not to enable modules dependency checking.
 // Enabled by default, prevents usage of modules that depend on other modules
 // that weren't loaded.
 // 'check_dependencies' => true,
),

 // Used to create an own service manager. May contain one or more child arrays.
 //'service_listener_options' => array(
 // array(
 // 'service_manager' => $stringServiceManagerName,
 // 'config_key' => $stringConfigKey,
 // 'interface' => $stringOptionalInterface,
 // 'method' => $stringRequiredMethodName,
 //),
 //)

 // Initial configuration with which to seed the ServiceManager.
 // Should be compatible with Zend\ServiceManager\Config.
 // 'service_manager' => array(),
);

The system configuration is for the bits and pieces related to the MVC that run
before your application is ready. The configuration is usually brief, and quite
minimal.

Also, system configuration is used immediately, and is not merged with any
other configuration – which means it cannot be overridden by a module.

This leads us to our first trick: how do you provide environment-specific
system configuration?

Environment-specific system configuration

What happens when you want to change the set of modules you use based on the
environment? Or if the configuration caching should be enabled based on
environment?

It is for this reason that the default system configuration we provide in the
skeleton application is in PHP; providing it in PHP means you can
programmatically manipulate it.

As an example, let’s make the following requirements:

	We want to use the ZendDeveloperTools module in development only.

	We want to have configuration caching on in production only.

To make this happen, we’ll set an environment variable in our web server
configuration, APP_ENV. In Apache, you’d put a directive like the following
in either your system-wide apache.conf or httpd.conf, or in the
definition for your virtual host; alternately, it can be placed in an
.htaccess file.

SetEnv "APP_ENV" "development"

For other web servers, consult the web server documentation to determine how to
set environment variables.

To simplify matters, we’ll assume the environment is “production” if no
environment variable is present.

We’ll modify the config/application.config.php file to read as follows:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

	<?php
$env = getenv('APP_ENV') ?: 'production';

// Use the $env value to determine which modules to load
$modules = array(
 'Application',
);
if ($env == 'development') {
 $modules[] = 'ZendDeveloperTools';
}

return array(
 'modules' => $modules,

 'module_listener_options' => array(
 'module_paths' => array(
 './module',
 './vendor',
),

 'config_glob_paths' => array(
 'config/autoload/{,*.}{global,local}.php',
),

 // Use the $env value to determine the state of the flag
 'config_cache_enabled' => ($env == 'production'),

 'config_cache_key' => 'app_config',

 // Use the $env value to determine the state of the flag
 'module_map_cache_enabled' => ($env == 'production'),

 'module_map_cache_key' => 'module_map',

 'cache_dir' => 'data/config/',

 // Use the $env value to determine the state of the flag
 'check_dependencies' => ($env != 'production'),
),
);

This approach gives you flexibility to alter system-level settings.

However, how about altering application specific settings (not system
configuration) based on the environment?

Environment-specific application configuration

Sometimes you want to change application configuration to load things such as
database adapters, log writers, cache adapters, and more based on the
environment. These are typically managed in the service manager, and may be
defined by modules. You can override them at the application level via
Zend\ModuleManager\Listener\ConfigListener, by specifying a glob path in the
system configuration – the module_listener_options.config_glob_paths
key from the previous examples.

The default value for this is config/autoload/{,*.}{global,local}.php. What
this means is that it will look for application configuration files in the
config/autoload directory, in the following order:

	global.php

	*.global.php

	local.php

	*.local.php

This allows you to define application-level defaults in “global” configuration
files, which you would then commit to your version control system, and
environment-specific overrides in your “local” configuration files, which you
would omit from version control.

This is a great solution for development, as it allows you to specify alternate
configuration that’s specific to your development environment without worrying
about accidently deploying it. However, what if you have more environments –
such as a “testing” or “staging” environment – and they each have their own
specific overrides?

Again, the application environment variable comes to play. We can alter the glob
path in the system configuration slightly:

'config_glob_paths' => array(
 sprintf('config/autoload/{,*.}{global,%s,local}.php', $env)
),

The above will allow you to define an additional set of application
configuration files per environment; furthermore, these will be loaded only if
that environment is detected!

As an example, consider the following tree of configuration files:

config/
 autoload/
 global.php
 local.php
 users.development.php
 users.testing.php
 users.local.php

If $env evaluates to testing, then the following files will be merged,
in the following order:

global.php
users.testing.php
local.php
users.local.php

Note that users.development.php is not loaded – this is because it will not
match the glob pattern!

Also, because of the order in which they are loaded, you can predict which
values will overwrite the others, allowing you to both selectively overwrite as
well as debug later.

Note

The files under config/autoload/ are merged after your module
configuration, detailed in next section. We have detailed it here, however,
as setting up the application configuration glob path happens within the
system configuration (config/application.config.php).

Module Configuration

One responsibility of modules is to provide their own configuration to the
application. Modules have two general mechanisms for doing this.

First, modules that either implement
Zend\ModuleManager\Feature\ConfigProviderInterface and/or a getConfig()
method can return their configuration. The default, recommended implementation
of the getConfig() method is:

public function getConfig()
{
 return include __DIR__ . '/config/module.config.php';
}

where module.config.php returns a PHP array. From that PHP array you can provide general configuration as
well as configuration for all the available Manager classes provided by the ServiceManager. Please refer to
the Configuration mapping table to see which configuration key is used for each specific Manager.

Second, modules can implement a number of interfaces and/or methods related to
specific service manager or plugin manager configuration. You will find an overview of all
interfaces and their matching Module Configuration functions inside the Configuration mapping table.

All interfaces are in the Zend\ModuleManager\Feature namespace, and
each is expected to return an array of configuration for a service manager, as
denoted in the section on default service configuration.

Configuration mapping table

	Manager name
	Interface name
	Module Method name
	Config key name

	ControllerPluginManager
	ControllerPluginProviderInterface
	getControllerPluginConfig()
	controller_plugins

	ControllerLoader
	ControllerProviderInterface
	getControllerConfig()
	controllers

	FilterManager
	FilterProviderInterface
	getFilterConfig()
	filters

	FormElementManager
	FormElementProviderInterface
	getFormElementConfig()
	form_elements

	HydratorManager
	HydratorProviderInterface
	getHydratorConfig()
	hydrators

	InputFilterManager
	InputFilterProviderInterface
	getInputFilterConfig()
	input_filters

	RoutePluginManager
	RouteProviderInterface
	getRouteConfig()
	route_manager

	SerializerAdapterManager
	SerializerProviderInterface
	getSerializerConfig()
	serializers

	ServiceLocator
	ServiceProviderInterface
	getServiceConfig()
	service_manager

	ValidatorManager
	ValidatorProviderInterface
	getValidatorConfig()
	validators

	ViewHelperManager
	ViewHelperProviderInterface
	getViewHelperConfig()
	view_helpers

Configuration Priority

Considering that you may have service configuration in your module configuration
file, what has precedence?

The order in which they are merged is:

	configuration returned by getConfig()

	configuration returned by the various service configuration methods in a
module class

In other words, your various service configuration methods win. Additionally,
and of particular note: the configuration returned from those methods will not
be cached. The reason for this is that it is not uncommon to use closures or
factory instances in configuration returned from your Module class – which
cannot be cached reliably.

Note

Use the various service configuration methods when you need to define
closures or instance callbacks for factories, abstract factories, and
initializers. This prevents caching problems, and also allows you to write
your configuration files in other markup formats.

Configuration merging workflow

To cap off the tutorial, let’s review how and when configuration is defined and
merged.

	System configuration
	Defined in config/application.config.php

	No merging occurs

	Allows manipulation programmatically, which allows the ability to:
	Alter flags based on computed values

	Alter the configuration glob path based on computed values

	Configuration is passed to the Application instance, and then the
ModuleManager in order to initialize the system.

	Application configuration
	The ModuleManager loops through each module class in the order defined
in the system configuration
	Service configuration defined in Module class methods is aggregated

	Configuration returned by Module::getConfig() is aggregated

	Files detected from the service configuration config_glob_paths
setting are merged, based on the order they resolve in the glob path.

	Merged configuration is finally passed to the ServiceManager

 [image: Edit this document]

 Using Zend\Navigation in your Album Module

Using Zend\Navigation in your Album Module

In this tutorial we will use the Zend\Navigation component
to add a navigation menu to the black bar at the top of the screen, and add
breadcrumbs above the main site content.

Preparation

In a real world application, the album browser would be only a portion of a working website. Usually the user
would land on a homepage first, and be able to view albums by using a standard navigation menu. So that we
have a site that is more realistic than just the albums feature, lets make the standard skeleton welcome page
our homepage, with the /album route still showing our album module. In order to make this change, we need to
undo some work we did earlier. Currently, navigating to the root of your app (/) routes you to the
AlbumController‘s default action. Let’s undo this route change so we have two discrete entry points to the
app, a home page, and an albums area.

module/Application/config/module.config.php

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	 'home' => array(
 'type' => 'Zend\Mvc\Router\Http\Literal',
 'options' => array(
 'route' => '/',
 'defaults' => array(
 'controller' => 'Application\Controller\Index', // <-- change back here
 'action' => 'index',
),
),
),

This change means that if you go to the home page of your application
(http://zf2-tutorial.localhost/), you see the default skeleton
application introduction. Your list of albums is still available at the
/album route.

Setting Up Zend\Navigation

Firstly, we need to tell our application which NavigationFactory to
use when using the bundled navigation view helpers. Thankfully, ZF2
comes with a default factory that will suit our needs just fine. To tell
ZF2 to use this default factory, we simply add a navigation key to
the service manager. Its best to do this in the Application module,
because, like the translation data, this is specific to the entire
application, and not just to our album pages:

module/Application/config/module.config.php

	1
2
3
4
5
6

	 'service_manager' => array(
 'factories' => array(
 'translator' => 'Zend\I18n\Translator\TranslatorServiceFactory',
 'navigation' => 'Zend\Navigation\Service\DefaultNavigationFactory', // <-- add this
),
),

Configuring our Site Map

Next up, we need Zend\Navigation to understand the hierarchy of our
site. Thankfully, if we add a navigation key to our merged config,
the navigation factory will automagically create the container and pages
needed to use the view helpers. Let’s do this in the Application
module:

module/Application/config/module.config.php

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	 return array(
 ...
 'navigation' => array(
 'default' => array(
 array(
 'label' => 'Home',
 'route' => 'home',
),
 array(
 'label' => 'Album',
 'route' => 'album',
 'pages' => array(
 array(
 'label' => 'Add',
 'route' => 'album',
 'action' => 'add',
),
 array(
 'label' => 'Edit',
 'route' => 'album',
 'action' => 'edit',
),
 array(
 'label' => 'Delete',
 'route' => 'album',
 'action' => 'delete',
),
),
),
),
),
 ...
);

This configuration maps out the pages we’ve defined in our controller,
with labels linking to the given route names. You can define highly
complex hierarchical sites here with pages and sub-pages linking to route
names, controller/action pairs or external uris. For more information
see the docs
here [http://framework.zend.com/manual/2.1/en/modules/zend.navigation.quick-start.html].

Adding the Menu View Helper

Now that we have the navigation helper configured by our service manager
and merged config, we can easily add the menu to the title bar to our
layout by using the menu view helper:

module/Application/view/layout/layout.phtml

	1
2
3
4
5
6
7

	 ...
 <a class="brand"
 href="<?php echo $this->url('home') ?>"><?php echo $this->translate('Skeleton Application') ?>
 <?php // <-- Add this !!
 echo $this->navigation('navigation')->menu();
 ?>
 ...

The navigation helper is built in to Zend Framework 2, and uses the
service manager configuration we’ve already defined to configure itself
automatically. Refreshing your application you will see a working menu, with
just a few tweaks however, we can make it look awesome:

module/Application/view/layout/layout.phtml

	1
2
3
4
5
6
7
8
9

	 <a class="brand"
 href="<?php echo $this->url('home') ?>"><?php echo $this->translate('Skeleton Application') ?>
 <?php // <-- Update this !!
 echo $this->navigation('navigation')
 ->menu()
 ->setMinDepth(0)
 ->setMaxDepth(0)
 ->setUlClass('nav navbar-nav');
 ?>

Here we tell the renderer to give the root UL the class of ‘nav’ so that
Twitter Bootstrap styles the menu correctly, and only render the first
level of any given page. If you view your application in your browser,
you will now see a nicely styled menu appear in the title bar. The great
thing about Zend\Navigation is that it integrates with ZF2’s route
so can tell which page you are currently viewing. Because of this, it
sets the active page to have a class of active in the menu. Twitter
Bootstrap uses this to highlight your current page accordingly.

Adding Breadcrumbs

Adding breadcrumbs is initially just as simple. In our layout.phtml
we want to add breadcrumbs above the main content pane, so our foolish
user knows exactly where they are in our complex website. Inside the
container div, before we output the content from the view, let’s add a
simple breadcrumb by using the
breadcrumbs view helper:

module/Application/view/layout/layout.phtml

	1
2
3
4
5
6

	 ...
 <div class="container">
 <?php echo $this->navigation('navigation')->breadcrumbs()->setMinDepth(0); // <-- Add this!! ?>
 <?php echo $this->content; ?>
 </div>
 ...

This adds a simple but functional breadcrumb to every page (we simply
tell it to render from a depth of 0 so we see all level of pages) but we
can do better than that! Because Bootstrap has a styled breadcrumb as
part of it’s base CSS, so let’s add a partial that outputs the UL in
bootstrap happy CSS. We’ll create it in the view directory of the
Application module (this partial is application wide, rather than
album specific):

module/Application/view/partial/breadcrumb.phtml

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21

	 <ul class="breadcrumb">
 <?php
 // iterate through the pages
 foreach ($this->pages as $key => $page):
 ?>

 <?php
 // if this isn't the last page, add a link and the separator
 if ($key < count($this->pages) - 1):
 ?>
 <a href="<?php echo $page->getHref(); ?>"><?php echo $page->getLabel(); ?>
 /
 <?php
 // otherwise, just output the name
 else:
 ?>
 <?php echo $page->getLabel(); ?>
 <?php endif; ?>

 <?php endforeach; ?>

Notice how the partial is passed a Zend\View\Model\ViewModel instance with the pages
property set to an array of pages to render. Now all we have to do is
tell the breadcrumb helper to use the partial we have just written:

module/Application/view/layout/layout.phtml

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	 ...
 <div class="container">
 <?php
 echo $this->navigation('navigation') // <-- Update this!!
 ->breadcrumbs()
 ->setMinDepth(0)
 ->setPartial(array('partial/breadcrumb.phtml', 'Album'));
 ?>
 <?php echo $this->content; ?>
 </div>
 ...

Refreshing the page now gives us a lovely styled set of breadcrumbs on
each page.

 [image: Edit this document]

 Using Zend\Paginator in your Album Module

Using Zend\Paginator in your Album Module

In this tutorial we will use the
Zend\Paginator component to add a handy
pagination controller to the bottom of the album list.

Currently, we only have a handful of albums to display, so showing everything on one page is not a problem.
However, how will the album list look when we have 100 albums or more in our database? The standard solution
to this problem is to split the data up into a number of pages, and allow the user to navigate around these
pages using a pagination control. Just type “Zend Framework” into Google, and you can see their pagination
control at the bottom of the page:

[image: Example pagination control]

Preparation

In order for us to have lots of albums in our database, you’ll need to run the following SQL insert statement
to insert the current 150 top iTunes albums (at the time of writing!):

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

	INSERT INTO `album` (`artist`, `title`)
VALUES
 ('David Bowie', 'The Next Day (Deluxe Version)'),
 ('Bastille', 'Bad Blood'),
 ('Bruno Mars', 'Unorthodox Jukebox'),
 ('Emeli Sandé', 'Our Version of Events (Special Edition)'),
 ('Bon Jovi', 'What About Now (Deluxe Version)'),
 ('Justin Timberlake', 'The 20/20 Experience (Deluxe Version)'),
 ('Bastille', 'Bad Blood (The Extended Cut)'),
 ('P!nk', 'The Truth About Love'),
 ('Sound City - Real to Reel', 'Sound City - Real to Reel'),
 ('Jake Bugg', 'Jake Bugg'),
 ('Various Artists', 'The Trevor Nelson Collection'),
 ('David Bowie', 'The Next Day'),
 ('Mumford & Sons', 'Babel'),
 ('The Lumineers', 'The Lumineers'),
 ('Various Artists', 'Get Ur Freak On - R&B Anthems'),
 ('The 1975', 'Music For Cars EP'),
 ('Various Artists', 'Saturday Night Club Classics - Ministry of Sound'),
 ('Hurts', 'Exile (Deluxe)'),
 ('Various Artists', 'Mixmag - The Greatest Dance Tracks of All Time'),
 ('Ben Howard', 'Every Kingdom'),
 ('Stereophonics', 'Graffiti On the Train'),
 ('The Script', '#3'),
 ('Stornoway', 'Tales from Terra Firma'),
 ('David Bowie', 'Hunky Dory (Remastered)'),
 ('Worship Central', 'Let It Be Known (Live)'),
 ('Ellie Goulding', 'Halcyon'),
 ('Various Artists', 'Dermot O\'Leary Presents the Saturday Sessions 2013'),
 ('Stereophonics', 'Graffiti On the Train (Deluxe Version)'),
 ('Dido', 'Girl Who Got Away (Deluxe)'),
 ('Hurts', 'Exile'),
 ('Bruno Mars', 'Doo-Wops & Hooligans'),
 ('Calvin Harris', '18 Months'),
 ('Olly Murs', 'Right Place Right Time'),
 ('Alt-J (?)', 'An Awesome Wave'),
 ('One Direction', 'Take Me Home'),
 ('Various Artists', 'Pop Stars'),
 ('Various Artists', 'Now That\'s What I Call Music! 83'),
 ('John Grant', 'Pale Green Ghosts'),
 ('Paloma Faith', 'Fall to Grace'),
 ('Laura Mvula', 'Sing To the Moon (Deluxe)'),
 ('Duke Dumont', 'Need U (100%) [feat. A*M*E] - EP'),
 ('Watsky', 'Cardboard Castles'),
 ('Blondie', 'Blondie: Greatest Hits'),
 ('Foals', 'Holy Fire'),
 ('Maroon 5', 'Overexposed'),
 ('Bastille', 'Pompeii (Remixes) - EP'),
 ('Imagine Dragons', 'Hear Me - EP'),
 ('Various Artists', '100 Hits: 80s Classics'),
 ('Various Artists', 'Les Misérables (Highlights From the Motion Picture Soundtrack)'),
 ('Mumford & Sons', 'Sigh No More'),
 ('Frank Ocean', 'Channel ORANGE'),
 ('Bon Jovi', 'What About Now'),
 ('Various Artists', 'BRIT Awards 2013'),
 ('Taylor Swift', 'Red'),
 ('Fleetwood Mac', 'Fleetwood Mac: Greatest Hits'),
 ('David Guetta', 'Nothing But the Beat Ultimate'),
 ('Various Artists', 'Clubbers Guide 2013 (Mixed By Danny Howard) - Ministry of Sound'),
 ('David Bowie', 'Best of Bowie'),
 ('Laura Mvula', 'Sing To the Moon'),
 ('ADELE', '21'),
 ('Of Monsters and Men', 'My Head Is an Animal'),
 ('Rihanna', 'Unapologetic'),
 ('Various Artists', 'BBC Radio 1\'s Live Lounge - 2012'),
 ('Avicii & Nicky Romero', 'I Could Be the One (Avicii vs. Nicky Romero)'),
 ('The Streets', 'A Grand Don\'t Come for Free'),
 ('Tim McGraw', 'Two Lanes of Freedom'),
 ('Foo Fighters', 'Foo Fighters: Greatest Hits'),
 ('Various Artists', 'Now That\'s What I Call Running!'),
 ('Swedish House Mafia', 'Until Now'),
 ('The xx', 'Coexist'),
 ('Five', 'Five: Greatest Hits'),
 ('Jimi Hendrix', 'People, Hell & Angels'),
 ('Biffy Clyro', 'Opposites (Deluxe)'),
 ('The Smiths', 'The Sound of the Smiths'),
 ('The Saturdays', 'What About Us - EP'),
 ('Fleetwood Mac', 'Rumours'),
 ('Various Artists', 'The Big Reunion'),
 ('Various Artists', 'Anthems 90s - Ministry of Sound'),
 ('The Vaccines', 'Come of Age'),
 ('Nicole Scherzinger', 'Boomerang (Remixes) - EP'),
 ('Bob Marley', 'Legend (Bonus Track Version)'),
 ('Josh Groban', 'All That Echoes'),
 ('Blue', 'Best of Blue'),
 ('Ed Sheeran', '+'),
 ('Olly Murs', 'In Case You Didn\'t Know (Deluxe Edition)'),
 ('Macklemore & Ryan Lewis', 'The Heist (Deluxe Edition)'),
 ('Various Artists', 'Defected Presents Most Rated Miami 2013'),
 ('Gorgon City', 'Real EP'),
 ('Mumford & Sons', 'Babel (Deluxe Version)'),
 ('Various Artists', 'The Music of Nashville: Season 1, Vol. 1 (Original Soundtrack)'),
 ('Various Artists', 'The Twilight Saga: Breaking Dawn, Pt. 2 (Original Motion Picture Soundtrack)'),
 ('Various Artists', 'Mum - The Ultimate Mothers Day Collection'),
 ('One Direction', 'Up All Night'),
 ('Bon Jovi', 'Bon Jovi Greatest Hits'),
 ('Agnetha Fältskog', 'A'),
 ('Fun.', 'Some Nights'),
 ('Justin Bieber', 'Believe Acoustic'),
 ('Atoms for Peace', 'Amok'),
 ('Justin Timberlake', 'Justified'),
 ('Passenger', 'All the Little Lights'),
 ('Kodaline', 'The High Hopes EP'),
 ('Lana Del Rey', 'Born to Die'),
 ('JAY Z & Kanye West', 'Watch the Throne (Deluxe Version)'),
 ('Biffy Clyro', 'Opposites'),
 ('Various Artists', 'Return of the 90s'),
 ('Gabrielle Aplin', 'Please Don\'t Say You Love Me - EP'),
 ('Various Artists', '100 Hits - Driving Rock'),
 ('Jimi Hendrix', 'Experience Hendrix - The Best of Jimi Hendrix'),
 ('Various Artists', 'The Workout Mix 2013'),
 ('The 1975', 'Sex'),
 ('Chase & Status', 'No More Idols'),
 ('Rihanna', 'Unapologetic (Deluxe Version)'),
 ('The Killers', 'Battle Born'),
 ('Olly Murs', 'Right Place Right Time (Deluxe Edition)'),
 ('A$AP Rocky', 'LONG.LIVE.A$AP (Deluxe Version)'),
 ('Various Artists', 'Cooking Songs'),
 ('Haim', 'Forever - EP'),
 ('Lianne La Havas', 'Is Your Love Big Enough?'),
 ('Michael Bublé', 'To Be Loved'),
 ('Daughter', 'If You Leave'),
 ('The xx', 'xx'),
 ('Eminem', 'Curtain Call'),
 ('Kendrick Lamar', 'good kid, m.A.A.d city (Deluxe)'),
 ('Disclosure', 'The Face - EP'),
 ('Palma Violets', '180'),
 ('Cody Simpson', 'Paradise'),
 ('Ed Sheeran', '+ (Deluxe Version)'),
 ('Michael Bublé', 'Crazy Love (Hollywood Edition)'),
 ('Bon Jovi', 'Bon Jovi Greatest Hits - The Ultimate Collection'),
 ('Rita Ora', 'Ora'),
 ('g33k', 'Spabby'),
 ('Various Artists', 'Annie Mac Presents 2012'),
 ('David Bowie', 'The Platinum Collection'),
 ('Bridgit Mendler', 'Ready or Not (Remixes) - EP'),
 ('Dido', 'Girl Who Got Away'),
 ('Various Artists', 'Now That\'s What I Call Disney'),
 ('The 1975', 'Facedown - EP'),
 ('Kodaline', 'The Kodaline - EP'),
 ('Various Artists', '100 Hits: Super 70s'),
 ('Fred V & Grafix', 'Goggles - EP'),
 ('Biffy Clyro', 'Only Revolutions (Deluxe Version)'),
 ('Train', 'California 37'),
 ('Ben Howard', 'Every Kingdom (Deluxe Edition)'),
 ('Various Artists', 'Motown Anthems'),
 ('Courteeners', 'ANNA'),
 ('Johnny Marr', 'The Messenger'),
 ('Rodriguez', 'Searching for Sugar Man'),
 ('Jessie Ware', 'Devotion'),
 ('Bruno Mars', 'Unorthodox Jukebox'),
 ('Various Artists', 'Call the Midwife (Music From the TV Series)'
);

This gives us a handy extra 150 rows to play with. If you now visit your album list at /album, you’ll see
a huge long list of 150+ albums, its ugly.

Modifying the AlbumTable

In order to let ZF2 handle our database queries automatically for us, we will be using the
Zend\Paginator\Adapter\DbSelect paginator adapter.
This will automatically manipulate and run a Zend\Db\Sql\Select object to
include the correct LIMIT and WHERE clauses, so that it returns only
the right amount of data needed to display the given page. Let’s modify the
fetchAll method of the AlbumTable model, so that it can optionally
return a paginator object:

module/Album/src/Album/Model/AlbumTable.php

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

	 <?php
 namespace Album\Model;

 use Zend\Db\ResultSet\ResultSet;
 use Zend\Db\TableGateway\TableGateway;
 use Zend\Db\Sql\Select;
 use Zend\Paginator\Adapter\DbSelect;
 use Zend\Paginator\Paginator;

 class AlbumTable
 {
 ...
 public function fetchAll($paginated=false)
 {
 if ($paginated) {
 // create a new Select object for the table album
 $select = new Select('album');
 // create a new result set based on the Album entity
 $resultSetPrototype = new ResultSet();
 $resultSetPrototype->setArrayObjectPrototype(new Album());
 // create a new pagination adapter object
 $paginatorAdapter = new DbSelect(
 // our configured select object
 $select,
 // the adapter to run it against
 $this->tableGateway->getAdapter(),
 // the result set to hydrate
 $resultSetPrototype
);
 $paginator = new Paginator($paginatorAdapter);
 return $paginator;
 }
 $resultSet = $this->tableGateway->select();
 return $resultSet;
 }
 ...

This will return a fully configured Paginator object. We’ve already told the DbSelect adapter to
use our created Select object, to use the adapter that the TableGateway object uses, and also how
to hydrate the result into a Album entity in the same fashion as the TableGateway does. This means
that our executed and returned paginator results will return Album objects in exactly the same fashion
as the non-paginated results.

Modifying the AlbumController

Next, we need to tell the album controller to return a Pagination object instead of a ResultSet.
Both these objects can by iterated over to return hydrated Album objects, so we won’t need to make many
changes to the view script:

module/Album/src/Album/Controller/AlbumController.php

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	 ...
 public function indexAction()
 {
 // grab the paginator from the AlbumTable
 $paginator = $this->getAlbumTable()->fetchAll(true);
 // set the current page to what has been passed in query string, or to 1 if none set
 $paginator->setCurrentPageNumber((int) $this->params()->fromQuery('page', 1));
 // set the number of items per page to 10
 $paginator->setItemCountPerPage(10);

 return new ViewModel(array(
 'paginator' => $paginator
));
 }
 ...

Here we are getting the configured Paginator object from the AlbumTable, and then telling it to use
the page that is optionally passed in the querystring page parameter. We are also telling the paginator
we want to display 10 objects per page.

Updating the View Script

Now, let’s just tell the view script to iterate over the pagination view variable, rather than the
albums variable:

module/Album/view/album/album/index.phtml

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	 <table class="table">
 <tr>
 <th>Title</th>
 <th>Artist</th>
 <th> </th>
 </tr>
 <?php foreach ($this->paginator as $album) : // <-- change here! ?>
 <tr>
 <td><?php echo $this->escapeHtml($album->title);?></td>
 <td><?php echo $this->escapeHtml($album->artist);?></td>
 <td>
 <a href="<?php echo $this->url('album',
 array('action' => 'edit', 'id' => $album->id));?>">Edit
 <a href="<?php echo $this->url('album',
 array('action' => 'delete', 'id' => $album->id));?>">Delete
 </td>
 </tr>
 <?php endforeach; ?>
 </table>

Checking the /album route on your website should now give you a list of just 10 albums, but with no method
to navigate through the pages. Let’s correct that now...

Creating the Pagination Control Partial

Much like we created a custom breadcrumbs partial to render our breadcrumb in the last tutorial, we need to
create a custom pagination control partial to render our pagination control just the way we want it. Again,
because we are using Twitter Bootstrap, this should be as simple as outputting correctly formatted html to get
a pretty control. Let’s create the partail in the module/Application/view/partial/ folder, so that we can
use the control in all our modules:

module/Application/view/partial/paginator.phtml

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

	 <?php if ($this->pageCount): ?>
 <div class="pagination pagination-centered">

 <!-- Previous page link -->
 <?php if (isset($this->previous)): ?>

 <a href="<?php echo $this->url($this->route); ?>?page=<?php echo $this->previous; ?>">
 <<

 <?php else: ?>
 <li class="disabled">

 <<

 <?php endif; ?>

 <!-- Numbered page links -->
 <?php foreach ($this->pagesInRange as $page): ?>
 <?php if ($page != $this->current): ?>

 <a href="<?php echo $this->url($this->route);?>?page=<?php echo $page; ?>">
 <?php echo $page; ?>

 <?php else: ?>
 <li class="active">
 <?php echo $page; ?>

 <?php endif; ?>
 <?php endforeach; ?>

 <!-- Next page link -->
 <?php if (isset($this->next)): ?>

 <a href="<?php echo $this->url($this->route); ?>?page=<?php echo $this->next; ?>">
 >>

 <?php else: ?>
 <li class="disabled">

 >>

 <?php endif; ?>

 </div>
 <?php endif; ?>

All this partial does is to create a pagination control with links to the correct pages (if there is more
than one page in the pagination object). It will render a previous page link (and mark it disabled if you
are at the first page), then render a list of intermediate pages (that are passed to the partial based on
the rendering style – we’ll set in the view helper in the next step). Finally, it will create a next page
link (and disable it if you’re at the end). Notice how we pass the page number via the page querystring
parameter which we have already told our controller to use to display the current page.

Using the PaginationControl View Helper

The only thing left for us to do so that we can page through the albums is to use the
paginationControl view helper to display our
pagination control. This is nicely straightforward as we have already done all
the ground work needed to display the control:

module/Album/view/album/album/index.phtml

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	 ...
 <?php
 // add at the end of the file after the table
 echo $this->paginationControl(
 // the paginator object
 $this->paginator,
 // the scrolling style
 'sliding',
 // the partial to use to render the control
 array('partial/paginator.phtml', 'Album'),
 // the route to link to when a user clicks a control link
 array(
 'route' => 'album'
)
);
 ?>

All we need to do here is to echo the paginationControl helper, and tell it to
use our paginator object, sliding
scrolling style, our
paginator partial, and which route to use for clicks. Refreshing your
application should give you a lovely bootstrap styled pagination control!

 [image: Edit this document]

 Setting up a database adapter

Setting up a database adapter

Introduction

In most cases, e.g. in your controllers, your database adapter can be fetched directly from the service manager. Some
classes however, like Zend\Validator\DbRecordExists isn’t aware of the service manager, but still needs an adapter
to function.

There are many different ways to provide this functionality to your application. Below are a few examples.

Basic setup

Normally you will setup your database adapter using a factory in the service manager in your configuration. It might
look something like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	// config/autoload/global.php

return array(
 'db' => array(
 'driver' => 'Pdo',
 'dsn' => 'mysql:dbname=zf2tutorial;host=localhost',
),
 'service_manager' => array(
 'factories' => array(
 'Zend\Db\Adapter\Adapter' => 'Zend\Db\Adapter\AdapterServiceFactory',
),
),
);

The adapter can then be accessed in any ServiceLocatorAware classes.

	1
2
3
4
5
6
7
8

	public function getAdapter()
{
 if (!$this->adapter) {
 $sm = $this->getServiceLocator();
 $this->adapter = $sm->get('Zend\Db\Adapter\Adapter');
 }
 return $this->adapter;
}

More information on adapter options can be found in the docs for Zend\Db\Adapter.

Setting a static adapter

In order to utilize this adapter in non-ServiceLocatorAware classes, you can use
Zend\Db\TableGateway\Feature\GlobalAdapterFeature::setStaticAdapter() to set a static adapter:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	// config/autoload/global.php

return array(
 'db' => array(
 'driver' => 'Pdo',
 'dsn' => 'mysql:dbname=zf2tutorial;host=localhost',
),
 'service_manager' => array(
 'factories' => array(
 'Zend\Db\Adapter\Adapter' => function ($serviceManager) {
 $adapterFactory = new Zend\Db\Adapter\AdapterServiceFactory();
 $adapter = $adapterFactory->createService($serviceManager);

 \Zend\Db\TableGateway\Feature\GlobalAdapterFeature::setStaticAdapter($adapter);

 return $adapter;
 }
),
),
);

The adapter can then later be fetched using Zend\Db\TableGateway\Feature\GlobalAdapterFeature::getStaticAdapter()
for use in e.g. Zend\Validator\DbRecordExists:

	1
2
3
4
5
6
7

	$validator = new Zend\Validator\Db\RecordExists(
 array(
 'table' => 'users',
 'field' => 'emailaddress',
 'adapter' => \Zend\Db\TableGateway\Feature\GlobalAdapterFeature::getStaticAdapter()
)
);

 [image: Edit this document]

 Migration from Zend Framework 1

Migration from Zend Framework 1

This guide is intended to provide tools and strategies for migrating from Zend
Framework 1 to Zend Framework 2. There is no single solution that will work for
every project, nor any tools to automate the process.

In this guide, we will cover the following:

	Tools for namespacing your code.

	Tools for consuming Zend Framework 2 within your Zend Framework 1 application.

	Strategies for running Zend Framework 2 and Zend Framework 1 in parallel.

	Strategies for making your code easier to migrate, focussing primarily on
clean separation of your domain logic and the MVC layer.

	Strategies for migrating the MVC layer.

	Strategies for migrating your domain layer.

 [image: Edit this document]

 Namespacing Old Classes

Namespacing Old Classes

ZF2’s minimal version is PHP 5.3. The most notable feature of PHP 5.3 is
the addition of namespaces, which ZF2 fully embraces. Moreover, new projects
built on ZF2 also fully embrace PHP namespaces. The addition of namespaces
to PHP has greatly improved the readability of long class names and
has helped better organize code into modules and components. This transition
has also given birth to some naming best practices that help developers organize
their code bases consisting of classes, components, and modules in a consistent
and clean fashion.

Converting an older code base that follows the original PEAR/ZF underscore
separated class naming convention into a properly namespaced codebase is one
of the easier strategies to employ in both modernizing your code base as well
as getting ready to ZF2-ify your ZF1 application.

We’ve created a tool to help in this endeavor, it is located here:

https://github.com/zendframework/Namespacer

This tool will take a wholesale approach to converting older code like the
following:

class My_Long_NestedComponent_ClassName
{
 // methods that use other classes
}

into:

namespace My\Long\NestedComponent;

use Other\Classes;
use Something\ElseConsumed;

class ClassName
{
 // methods with classes converted to short name from use statement.
}

Some IDEs have this capability to some degree. That said, a good approach might
be to use the command line Namespacer to do a full sweep of your codebase,
then use the IDE to make more specific naming changes that might makes more
sense to your application.

Namespacing a ZF1 Application

The above Namespacer is a generalized tool. It does not understand the
structure and naming conventions of a ZF1 application. As such, you’ll need to
address the problem of converting your classes according to their role, and
which classes you find you can convert without affecting the way the framework
interoperates with your code.

For example, in ZF1, the naming convention of application and module layer classes
does not directly match up with same well-defined library class/file conventions of
the PEAR/ZF namings. For a standard ZF1 application, in the application/ directory,
controller classes are not prefixed, yet model and form classes are prefixed with
Application_. Moreover, they exist inside of lowercased directories, such as
models or forms, and their file to class name segment matching picks up only
after the first segment. As an example, you might have this directory structure
with the class names on the right:

application/
 ├── Bootstrap.php
 ├── configs
 │ ├── application.ini
 │ └── application.ini.dist
 ├── controllers
 │ ├── IndexController.php [class IndexController]
 │ └── PurchaseOrderController.php [class PurchaseOrderController]
 ├── forms
 │ └── PurchaseOrder
 │ └── Payment.php [class Application_Form_PurchaseOrder_Payment]
 ├── layouts
 │ └── scripts
 │ ├── main.phtml
 │ └── subpage.phtml
 ├── models
 │ ├── DbTable
 │ │ └── Invoice.php [Application_Model_DbTable_Invoice]
 │ ├── Invoice.php [Application_Model_Invoice]
 │ ├── InvoiceRepository.php [Application_Model_InvoiceRepository]
 │ ├── Payment
 │ │ └── Paypal
 │ │ └── DirectPayment.php [Application_Model_Payment_Paypal_DirectPayment]
 │ └── PurchaseOrder.php [Application_Model_PurchaseOrder]
 └── views
 └── scripts
 ├── error
 │ └── error.phtml
 ├── index
 │ └── index.phtml
 └── purchase-order
 ├── index.phtml
 └── purchaser.phtml

It would not be a good strategy to attempt to do a wholesale namespacing of this kind
of project for a number of reasons:

	ZF1 has special, context-aware autoloaders that will assist loading a class of
a particular context from a special location on disk. For example, ZF1
understands controllers will be located in the controllers directory and
will not be prefixed unless they are inside of a named module’s
controllers directory.

	Attempting to apply namespacing to controller classes would generally render
a ZF1 application useless. ZF1, beyond loading files from disk, assumes
controllers will have a very specific naming convention so that they can be
invoked by the framework upon routing and dispatching.

	Beyond dispatching, ZF1 uses the class name to identify and map the proper view
script to automatically execute. By naming the controller something non-standard,
views will no longer this this 1:1 mapping of controllers by name to controller action
named view scripts.

A better solution would be to start by namespacing the parts of your ZF1 application that
have fewer tie-ins with the ZF1 architecture. The place to start with this is models
and forms.

Since models and forms do not touch controller and view classes (which make heavy use
of ZF1 classes by way of inheritance), model and form classes might not have the same
level of coupling.

HOWTO Namespace Your Models

First, ensure your classes are under version control. The namespacer tool will
make modification to classes in place. You can then use your version control
system as a diffing utility afterwards .

To run the tool, download the phar. Optionally you can place the
namespacer.phar into a directory in your PATH.

Namespacing is a 2 part process:

	Create a map of all the old files, new files, old classes and new classes.

	Make the transformations according to the map file.

Change into your models/ directory and execute the map function:

namespacer.phar map --mapfile model-map.php --source models/

This will produce a file called model-map.php with entries like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	<?php return array (
 array (
 'root_directory' => '/realpath/to/project/application/models',
 'original_class' => 'Application_Model_Invoice',
 'original_file' => '/realpath/to/project/application/models/Invoice.php',
 'new_namespace' => 'Application\\Model',
 'new_class' => 'Invoice',
 'new_file' => '/realpath/to/project/application/models/Application/Model/Invoice.php',
),
 ...
);

This gives you an opportunity to manually edit the transformations if you so desire.
While you can modify this file, you also might find it to be easier to go with the default
transformations, and do the remaining changes with your IDE’s refactoring utility.

Once you are happy with the map file, run the transformations:

namespacer.phar transform --mapfile model-map.php

At this point, you can use your version control system’s status command to
see how the directory has transformed. As an example, in a sample project of
mine, git reports the following:

renamed: models/DbTable/Invoice.php -> models/Application/Model/DbTable/Invoice.php
new file: models/Application/Model/DbTable/Transaction.php
renamed: models/Invoice.php -> models/Application/Model/Invoice.php
renamed: models/Payment/Paypal/DirectPayment.php -> models/Application/Model/Payment/Paypal/DirectPayment.php
renamed: models/PurchaseOrder.php -> models/Application/Model/PurchaseOrder.php
renamed: models/PurchaseOrderRepository.php -> models/Application/Model/PurchaseOrderRepository.php
new file: models/Application/Model/PurchaseOrderService.php
renamed: models/Purchaser.php -> models/Application/Model/Purchaser.php
renamed: models/Ticket.php -> models/Application/Model/Ticket.php
renamed: models/Transaction.php -> models/Application/Model/Transaction.php
renamed: models/TransactionRepository.php -> models/Application/Model/TransactionRepository.php
deleted: models/DbTable/Transaction.php
deleted: models/PurchaseOrderService.php

You’ll notice that the resulting files have treated the models/ directory as the autoloader root
directory. That means that from this root, class files follow the strict PEAR/ZF2 classfile
naming convention. The contents of one of the files will look like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	namespace Application\Model;

use Application\Model\PurchaseOrder;
use Application\Model\Transaction;
use Zend_Filter_Alnum;

class Invoice
{

 protected $tickets;
 protected $transaction;

 ...
}

Things to notice here:

	A namespace has been created for this class.

	The namespacer has created PHP use statements for classes known in the map file.

	Unknown classes are also included (for example, Zend classes) in use
statements.

By keeping the old ZF1 classes, your models should continue to work if they
consume ZF1 classes. This will allow you to, at your own pace, transition your
codebase to ZF2.

This same procedure can largely be adapted to forms and independent library
code as well.

 [image: Edit this document]

 Running Zend Framework 2 and Zend Framework 1 in parallel

Running Zend Framework 2 and Zend Framework 1 in parallel

From a technical point of view it is absolutely possible to run ZF2 in parallel
with ZF1 because there is no conflict between the classnames due to the fact
that ZF2 uses namespaces and ZF1 does not. Running ZF1 and ZF2 in parallel can
be used as a migration strategy in projects where it is not possible, or not
convenient, to migrate an entire application from ZF1 to ZF2. For instance, you
could implement any new features of the application using ZF2, while maintaining
original ZF1 features.

Let’s examine some scenarios on how to execute ZF1 and ZF2 together.

Use ZF2 in a ZF1 project

Suppose we have an existing ZF1 application and we want to start using ZF2; how
could we do that?

Because ZF2 uses namespaced classes, you can run it in parallel with ZF1 without
naming conflicts. In order to do this, you will need to add some code to
autoload ZF2 from within your ZF1 project. Add these lines of code in your
public/index.php, before the instantiation of $application:

	1
2
3
4
5
6

	define('ZF2_PATH', '/path/to/zf2/library');
require_once ZF2_PATH . '/Zend/Loader/StandardAutoloader.php';
$loader = new Zend\Loader\StandardAutoloader(array(
 'autoregister_zf' => true,
));
$loader->register();

We used the StandardAutoloader class from ZF2. Using this autoloader,
classes with the initial namespace Zend will be loaded using the
ZF2_PATH, and any ZF1 classes will continue to be loaded via the mechanisms
present in ZF1.

Of course, this is not a real integration of ZF2 inside ZF1; it only provides
the ability to consume ZF2 classes within your ZF1 application. For instance,
you cannot use the MVC architecture of ZF2 because you are using the MVC of ZF1.

Evan Coury, a member of the ZF community review team, has produced a nice module
for ZF1 (zf-2-for-1 [https://github.com/EvanDotPro/zf-2-for-1]) that allows you to use ZF2 features inside an existing
ZF1 application. This module offers some basic integrations like the usage of
ZF2 view helpers in the ZF1 view layer (i.e. $this->zf2->get('formRow')).

Use ZF1 in a ZF2 project

You can add ZF1 to your ZF2 application via Composer by adding the
“zendframework/zendframework1” package as a requirement.

For instance, if you have a ZF2 application and you want to install ZF 1.12, you
need to add the following line in the require section of your composer.json
file:

	1
2
3
4
5

	"require": {
 "php": ">=5.3.3",
 "zendframework/zendframework1": "1.12",
 ...
 }

After executing composer.phar update, you can start to use ZF1 classes in your ZF2
project. Since all ZF1 classes exist in the global namespace, you will need to
refer to them by their full name; as examples, Zend_Date,
Zend_Feed_Reader, etc.

For other strategies on how to use ZF1 in a ZF2 project, you can check out this
blog post by Abdul Malik Ikhsan, Zend Framework 2 : Using Zend Framework 1
libraries [http://samsonasik.wordpress.com/2012/12/04/zend-framework-2-using-zend-framework-1-libraries-in-zend-framework-2/].

Run ZF1 and ZF2 together

As we mentioned early, one way to migr